Reputation: 6220
I'm using tensorflow on python I have a data tensor of shape [?, 5, 37], and a idx tensor of shape [?, 5]
I'd like to extract elements from data and get an output of shape [?, 5] such that:
output[i][j] = data[i][j][idx[i, j]] for all i in range(?) and j in range(5)
It looks loke the tf.gather_nd() function is the closest to my needs, but I don't see how to use it it my case...
Thanks !
EDIT : I managed to do it with gather_nd as shown below, but is there a better option ? (it seems a bit heavy-handed)
nRows = tf.shape(length_label)[0] ==> ?
nCols = tf.constant(MAX_LENGTH_INPUT + 1, dtype=tf.int32) ==> 5
m1 = tf.reshape(tf.tile(tf.range(nCols), [nRows]),
shape=[nRows, nCols])
m2 = tf.transpose(tf.reshape(tf.tile(tf.range(nRows), [nCols]),
shape=[nCols, nRows]))
indices = tf.pack([m2, m1, idx], axis=-1)
# indices should be of shape [?, 5, 3] with indices[i,j]==[i,j,idx[i,j]]
output = tf.gather_nd(data, indices=indices)
Upvotes: 1
Views: 2529
Reputation: 6220
I managed to do it with gather_nd
as shown below
nRows = tf.shape(length_label)[0] # ==> ?
nCols = tf.constant(MAX_LENGTH_INPUT + 1, dtype=tf.int32) # ==> 5
m1 = tf.reshape(tf.tile(tf.range(nCols), [nRows]),
shape=[nRows, nCols])
m2 = tf.transpose(tf.reshape(tf.tile(tf.range(nRows), [nCols]),
shape=[nCols, nRows]))
indices = tf.pack([m2, m1, idx], axis=-1)
# indices should be of shape [?, 5, 3] with indices[i,j]==[i,j,idx[i,j]]
output = tf.gather_nd(data, indices=indices)
Upvotes: 2