ardms
ardms

Reputation: 170

python pandas .apply() function index error

I have the following DataFrame:

                              P     N  ID  Year  Month
TS                                                    
2016-06-26 19:30:00  263.600006   5.4   5  2016      6
2016-06-26 20:00:00  404.700012   5.6   5  2016      6
2016-06-26 21:10:00  438.600006   6.0   5  2016      6
2016-06-26 21:20:00  218.600006   5.6   5  2016      6
2016-07-02 16:10:00  285.300049  15.1   5  2016      7

I'm trying to add a new column based on the values of columns Year and Month something like the following

def exp_records(row):
    return calendar.monthrange(row['Year'], row['Month'])[1]
df['exp_counts'] = df.apply(exp_records, axis=1)

But I'm getting the following error:

TypeError: ('integer argument expected, got float', 'occurred at index 2016-06-26 19:30:00')

If I however reset_index() to integer then the above .apply() works fine. Is this the expected behavior?

I'm using using pandas 0.19.1 with Python 3.4


Code to recreate the DataFrame:

s = '''
TS,P,N,ID,Year,Month
2016-06-26 19:30:00,263.600006,5.4,5,2016,6
2016-06-26 20:00:00,404.700012,5.6,5,2016,6
2016-06-26 21:10:00,438.600006,6.0,5,2016,6
2016-06-26 21:20:00,218.600006,5.6,5,2016,6
2016-07-02 16:10:00,285.300049,15.1,5,2016,7
'''

df = pd.read_csv(pd.compat.StringIO(s), index_col=0, parse_dates=True)

Upvotes: 2

Views: 7486

Answers (1)

Mike Müller
Mike Müller

Reputation: 85442

Solution

Use df[['Year', 'Month']] for apply:

df['exp_counts'] = df[['Year', 'Month']].apply(exp_records, axis=1)

Result:

                              P     N  ID  Year  Month  exp_counts
TS                                                                
2016-06-26 19:30:00  263.600006   5.4   5  2016      6          30
2016-06-26 20:00:00  404.700012   5.6   5  2016      6          30
2016-06-26 21:10:00  438.600006   6.0   5  2016      6          30
2016-06-26 21:20:00  218.600006   5.6   5  2016      6          30
2016-07-02 16:10:00  285.300049  15.1   5  2016      7          31

Reason

While your Year and Month columns are integer:

df.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 5 entries, 2016-06-26 19:30:00 to 2016-07-02 16:10:00
Data columns (total 5 columns):
P        5 non-null float64
N        5 non-null float64
ID       5 non-null int64
Year     5 non-null int64
Month    5 non-null int64
dtypes: float64(2), int64(3)
memory usage: 240.0 bytes

You access them by row, which makes them floats:

df.T.info()

<class 'pandas.core.frame.DataFrame'>
Index: 5 entries, P to Month
Data columns (total 5 columns):
2016-06-26 19:30:00    5 non-null float64
2016-06-26 20:00:00    5 non-null float64
2016-06-26 21:10:00    5 non-null float64
2016-06-26 21:20:00    5 non-null float64
2016-07-02 16:10:00    5 non-null float64
dtypes: float64(5)
memory usage: 240.0+ bytes

Since df.apply(exp_records, axis=1) goes by row, you essentially convert to rows.

This is what you get in exp_records for row:

P         263.600006
N           5.400000
ID          5.000000
Year     2016.000000
Month       6.000000
Name: 2016-06-26T19:30:00.000000000, dtype: float64

Creating a dataframe with the columns Year and Month only, does cause a converting to float because both columns a integers:

df[['Year', 'Month']].T.info()

<class 'pandas.core.frame.DataFrame'>
Index: 2 entries, Year to Month
Data columns (total 5 columns):
2016-06-26 19:30:00    2 non-null int64
2016-06-26 20:00:00    2 non-null int64
2016-06-26 21:10:00    2 non-null int64
2016-06-26 21:20:00    2 non-null int64
2016-07-02 16:10:00    2 non-null int64
dtypes: int64(5)
memory usage: 96.0+ bytes

Upvotes: 5

Related Questions