Reputation: 2198
my code that fails with the infamous:
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_2' with dtype float [[Node: Placeholder_2 = Placeholderdtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]]
Here is my code:
logits = LeNet(x)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, one_hot_y)
loss_operation = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate = rate)
training_operation = optimizer.minimize(loss_operation)
def LeNet(x):
# Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer
mu = 0
sigma = 0.1
# SOLUTION: Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6.
conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6), mean = mu, stddev = sigma))
conv1_b = tf.Variable(tf.zeros(6))
conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b
# SOLUTION: Activation.
conv1 = tf.nn.relu(conv1)
#Hardcoded dropout
conv1 = tf.nn.dropout(conv1,0.9)
# SOLUTION: Pooling. Input = 28x28x6. Output = 14x14x6.
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# SOLUTION: Layer 2: Convolutional. Output = 10x10x16.
conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma))
conv2_b = tf.Variable(tf.zeros(16))
conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b
# SOLUTION: Activation.
conv2 = tf.nn.relu(conv2)
# SOLUTION: Pooling. Input = 10x10x16. Output = 5x5x16.
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
# SOLUTION: Flatten. Input = 5x5x16. Output = 400.
fc0 = flatten(conv2)
# SOLUTION: Layer 3: Fully Connected. Input = 400. Output = 120.
fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 120), mean = mu, stddev = sigma))
fc1_b = tf.Variable(tf.zeros(120))
fc1 = tf.matmul(fc0, fc1_W) + fc1_b
# SOLUTION: Activation.
fc1 = tf.nn.relu(fc1)
# SOLUTION: Layer 4: Fully Connected. Input = 120. Output = 84.
fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), mean = mu, stddev = sigma))
fc2_b = tf.Variable(tf.zeros(84))
fc2 = tf.matmul(fc1, fc2_W) + fc2_b
# SOLUTION: Activation.
fc2 = tf.nn.relu(fc2)
#Dropout layer
fc2 = tf.nn.dropout(fc2, keep_prob)
# SOLUTION: Layer 5: Fully Connected. Input = 84. Output = 43.
fc3_W = tf.Variable(tf.truncated_normal(shape=(84, 43), mean = mu, stddev = sigma))
fc3_b = tf.Variable(tf.zeros(43))
logits = tf.matmul(fc2, fc3_W) + fc3_b
return logits
x = tf.placeholder(tf.float32, (None, 32, 32, 1))
grayscaleimage = np.reshape(image2Gray(image), (1,32,32,1))
# doesn't matter whether i use the below 2 lines or not
# ideally i should be able to just put the grayscaleimage ndarray into
# tensorflow as if I try to put something else, it complains that
# type should be ... or ... or...etc or ndarray
own_images = np.empty([0, 32, 32, 1], dtype = np.float32)
own_images = np.append(own_images, grayscaleimage, axis = 0)
output = tf.argmax(logits, 1)
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
output = sess.run(output, feed_dict={x: (own_images)})
print(output)
Upvotes: 3
Views: 8950
Reputation: 2198
I figured out the issue.
Logits = LeNet(x)
the definition of LeNet(x) uses a "keep_prob" variable which isn't being fed.
Changing the code to:
output = sess.run(output, feed_dict={x: own_images, keep_prob:1.0})
solves the issue.
However word of warning. If you try to comment out the keep_prob variable within the LeNet function definition, it may not fix the issue as you have to refresh the function definitions and calls in other cells also.
Upvotes: 4