julienl
julienl

Reputation: 171

Avoid recomputing same values in Dask?

I would expect in the following code, the first computation to take 3+sec and the second one to be much faster. What should I do to get dask to avoid re-doing a computation to the client? (I had previously searched for the answer to this question, regarding pure=True and have not found anything)

from dask import delayed, compute
from dask.distributed import Client

@delayed(pure=True)
def foo(a):
    time.sleep(3)
    return 1

foo_res = foo(1)

client = Client()

import time
t1 = time.time()
results = compute(foo_res, get=client.get)
t2 = time.time()
print("Time : {}".format(t2-t1))


t1 = time.time()
results = compute(foo_res, get=client.get)
t2 = time.time()
print("Time : {}".format(t2-t1))

output:

Time : 3.01729154586792
Time : 3.0170397758483887

Upvotes: 2

Views: 178

Answers (1)

MRocklin
MRocklin

Reputation: 57319

You need to use the persist method on the Client

foo_res = client.persist(foo_res)

This will start computation in the background and keep the results in memory for as long as some reference to foo_res is in your Python session

Relevant doc page is here: http://distributed.readthedocs.io/en/latest/manage-computation.html

Upvotes: 2

Related Questions