Reputation: 1370
I beg for your help, speeding up the following program:
main = do
jobsToProcess <- fmap read getLine
forM_ [1..jobsToProcess] $ \_ -> do
[r, k] <- fmap (map read . words) getLine :: IO [Int]
putStrLn $ doSomeReallyLongWorkingJob r k
There could(!) be a lot of identical jobs to do, but it's not up to me modifying the inputs, so I tried to use Data.HashMap
for backing up already processed jobs. I already optimized the algorithms in the doSomeReallyLongWorkingJob
function, but now it seems, it's quite as fast as C.
But unfortunately it seems, I'm not able to implement a simple cache without producing a lot of errors. I need a simple cache of Type HashMap (Int, Int) Int
, but everytime I have too much or too few brackets. And IF I manage to define the cache, I'm stuck in putting data into or retrieving data from the cache cause of lots of errors.
I already Googled for some hours but it seems I'm stuck. BTW: The result of the longrunner
is an Int
as well.
Upvotes: 1
Views: 1681
Reputation: 125
I am just adding this answer since I feel like the other answers are diverging a bit from the original question, namely using hashtable constructs in Main function (inside IO monad).
Here is a minimal hashtable example using hashtables module. To install the module with cabal, simply use
cabal install hashtables
In this example, we simply put some values in a hashtable and use lookup to print a value retrieved from the table.
import qualified Data.HashTable.IO as H
main :: IO ()
main = do
t <- H.new :: IO (H.CuckooHashTable Int String)
H.insert t 22 "Hello world"
H.insert t 5 "No problem"
msg <- H.lookup t 5
print msg
Notice that we need to use explicit type annotation to specify which implementation of the hashtable we wish to use.
Upvotes: 0
Reputation: 153152
It's pretty simple to make a stateful action that caches operations. First some boilerplate:
{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.State
import Data.Map (Map)
import qualified Data.Map as M
import Debug.Trace
I'll use Data.Map
, but of course you can substitute in a hash map or any similar data structure without much trouble. My long-running computation will just add up its arguments. I'll use trace
to show when this computation is executed; we'll hope not to see the output of the trace
when we enter a duplicate input.
reallyLongRunningComputation :: [Int] -> Int
reallyLongRunningComputation args = traceShow args $ sum args
Now the caching operation will just look up whether we've seen a given input before. If we have, we'll return the precomputed answer; otherwise we'll compute the answer now and store it.
cache :: (MonadState (Map a b) m, Ord a) => (a -> b) -> a -> m b
cache f x = do
mCached <- gets (M.lookup x)
case mCached of
-- depending on your goals, you may wish to force `result` here
Nothing -> modify (M.insert x result) >> return result
Just cached -> return cached
where
result = f x
The main
function now just consists of calling cache reallyLongRunningComputation
on appropriate inputs.
main = do
iterations <- readLn
flip evalStateT M.empty . replicateM_ iterations
$ liftIO getLine
>>= liftIO . mapM readIO . words
>>= cache reallyLongRunningComputation
>>= liftIO . print
Let's try it in ghci!
> main
5
1 2 3
[1,2,3]
6
4 5
[4,5]
9
1 2
[1,2]
3
1 2
3
1 2 3
6
As you can see by the bracketed outputs, reallyLongRunningComputation
was called the first time we entered 1 2 3
and the first time we entered 1 2
, but not the second time we entered these inputs.
Upvotes: 5
Reputation: 1590
I hope i'm not too far off base, but first you need a way to carry around the past jobs with you. Easiest would be to use a foldM instead of a forM.
import Control.Monad
import Data.Maybe
main = do
jobsToProcess <- fmap read getLine
foldM doJobAcc acc0 [1..jobsToProcess]
where
acc0 = --initial value of some type of accumulator, i.e. hash map
doJobAcc acc _ = do
[r, k] <- fmap (map read . words) getLine :: IO [Int]
case getFromHash acc (r,k) of
Nothing -> do
i <- doSomeReallyLongWorkingJob r k
return $ insertNew acc (r,k) i
Just i -> do
return acc
Note, I don't actually use the interface for putting and getting the hash table key. It doesn't actually have to be a hash table, Data.Map from containers could work. Or even a list if its going to be a small one.
Another way to carry around the hash table would be to use a State transformer monad.
Upvotes: 1