Reputation: 15496
I have a DataFrame
with a MultiIndex
. The index fields are OptionSymbol
(level 0) and QuoteDatetime
(level 1). I have indexed and sorted the DataFrame
like so:
sorted = df.sort_values(
['OptionSymbol', 'QuoteDatetime'],
ascending=[False, True]
)
indexed = sorted.set_index(
['OptionSymbol', 'QuoteDatetime'],
drop=True
)
This results in the following:
Id Strike Expiration OptionType
OptionSymbol QuoteDatetime
ZBYMZ 2013-09-02 234669 170.0 2011-01-22 put
2013-09-03 234901 170.0 2011-01-22 put
2013-09-04 235133 170.0 2011-01-22 put
... ... ... ... ... ...
YBWNA 2010-02-12 262202 95.0 2010-02-20 call
2010-02-16 262454 95.0 2010-02-20 call
2010-02-17 262707 95.0 2010-02-20 call
... ... ... ... ... ...
XWNAX 2012-07-12 262201 90.0 2010-02-20 call
2012-07-16 262453 90.0 2010-02-20 call
2012-07-17 262706 90.0 2010-02-20 call
... ... ... ... ... ...
WWWAX 2012-04-12 262201 90.0 2010-02-20 call
2012-04-16 262453 90.0 2010-02-20 call
2012-04-17 262706 90.0 2010-02-20 call
... ... ... ... ... ...
As expected the frame is first sorted by in descending order by OptionSymbol
and ascending order within the OptionSymbol
group.
What I need to do is resort now by the first value in QuoteDatetime
so the result looks like this:
Id Strike Expiration OptionType
OptionSymbol QuoteDatetime
XBWNA 2010-02-12 262202 95.0 2010-02-20 call
2010-02-16 262454 95.0 2010-02-20 call
2010-02-17 262707 95.0 2010-02-20 call
... ... ... ... ... ...
NWWAX 2012-04-12 262201 90.0 2010-02-20 call
2012-04-16 262453 90.0 2010-02-20 call
2012-04-17 262706 90.0 2010-02-20 call
... ... ... ... ... ...
BWNAX 2012-07-12 262201 90.0 2010-02-20 call
2012-07-16 262453 90.0 2010-02-20 call
2012-07-17 262706 90.0 2010-02-20 call
... ... ... ... ... ...
XBYMZ 2013-09-02 234669 170.0 2011-01-22 put
2013-09-03 234901 170.0 2011-01-22 put
2013-09-04 235133 170.0 2011-01-22 put
... ... ... ... ... ...
I've tried various ways of resorting by index=1 but then I lose the OptionSymbol
group. How can I do this sort?
from collections import OrderedDict
df = OrderedDict((
('OptionSymbol', pd.Series(['ZBYMZ', 'ZBYMZ', 'ZBYMZ', 'YBWNA', 'YBWNA', 'YBWNA', 'XWNAX', 'XWNAX', 'XWNAX', 'WWWAX', 'WWWAX', 'WWWAX', ])),
('QuoteDatetime', pd.Series(['2013-09-02', '2013-09-03', '2013-09-04', '2010-02-12', '2010-02-16', '2010-02-17', '2012-07-12', '2012-07-16', '2012-07-17', '2012-04-12', '2012-04-16', '2012-04-17'])),
('Id', pd.Series(np.random.randn(12,))),
('Strike', pd.Series(np.random.randn(12,))),
('Expiration', pd.Series(np.random.randn(12,))),
('OptionType', pd.Series(np.random.randn(12,)))
))
Bizarre in this case using df.sort_index(level=1)
does the trick however on my full data set (20+ columns) I lose the OptionSymbol
grouping.
Upvotes: 1
Views: 1143
Reputation: 210882
IIUC you can simply sort index by the second level:
In [27]: df.sort_index(level=1)
Out[27]:
Id Strike Expiration OptionType
OptionSymbol QuoteDatetime
YBWNA 2010-02-12 262202 95.0 2010-02-20 call
2010-02-16 262454 95.0 2010-02-20 call
2010-02-17 262707 95.0 2010-02-20 call
WWWAX 2012-04-12 262201 90.0 2010-02-20 call
2012-04-16 262453 90.0 2010-02-20 call
2012-04-17 262706 90.0 2010-02-20 call
XWNAX 2012-07-12 262201 90.0 2010-02-20 call
2012-07-16 262453 90.0 2010-02-20 call
2012-07-17 262706 90.0 2010-02-20 call
ZBYMZ 2013-09-02 234669 170.0 2011-01-22 put
2013-09-03 234901 170.0 2011-01-22 put
2013-09-04 235133 170.0 2011-01-22 put
Upvotes: 2