Reputation: 390
I am trying to make a data marker on a python plot that shows the x and y coordinates, preferably automatically if this is possible. Please keep in mind that I am new to python and do not have any experience using the marker functionality in matplotlib. I have FFT plots from .csv files that I am trying to compare to theoretical calculations, but I need a way of highlighting a specific point and dropping a marker that has the coordinate values similar to MATLAB. For reference, I am plotting an FFT of frequency intensity of a 100kHz sine wave with an amplitude of 1V, so I am trying to show that the spike at 100kHz is close to the calculated value of 3.98dBm in a 50ohm environment. Here is some of the data from my csv file around the point of interest (The third column is of no interest):
9.991250000000E+04 -8.399371E+01 0.000000E+00
9.992500000000E+04 -8.108232E+01 0.000000E+00
9.993750000000E+04 -7.181630E+01 0.000000E+00
9.995000000000E+04 -7.190387E+01 0.000000E+00
9.996250000000E+04 -7.961070E+01 0.000000E+00
9.997500000000E+04 -8.090104E+01 0.000000E+00
9.998750000000E+04 -1.479405E+01 0.000000E+00
1.000000000000E+05 3.740311E+00 0.000000E+00
1.000125000000E+05 -6.665535E-01 0.000000E+00
1.000250000000E+05 -7.868803E+01 0.000000E+00
1.000375000000E+05 -8.149953E+01 0.000000E+00
1.000500000000E+05 -7.948487E+01 0.000000E+00
1.000625000000E+05 -7.436191E+01 0.000000E+00
1.000750000000E+05 -8.068216E+01 0.000000E+00
1.000875000000E+05 -7.998886E+01 0.000000E+00
1.001000000000E+05 -8.316663E+01 0.000000E+00
Here is how I am extracting the data
Frequency = data[:,0]
Intensity = data[:,1]
title("Frequency Intensity")
xlabel("Frequency [Hz]")
ylabel("Intensity [dBm]")
plot(Frequency, Intensity)
grid();
Edit: I would like my plot to look something like this where x shows the frequency and y shows the intensity in dBm. I simply want the marker I place to show the x,y coordinates on the plot.
Upvotes: 1
Views: 2818
Reputation: 294258
Create a pd.Series
from data
s = pd.DataFrame({
'Frequency [Hz]': data[:, 0],
'Intensity [dBm]': data[:, 1]
}).set_index('Frequency [Hz]')['Intensity [dBm]']
Then plot with annotate
ax = s.plot(title='Frequency Intensity')
ax.set_ylabel(s.name)
point = (s.index[7], s.values[7])
ax.annotate('Marker', xy=point, xytext=(0.1, 0.95), textcoords='axes fraction',
arrowprops=dict(facecolor='black', shrink=0.05),
)
Upvotes: 1
Reputation: 8047
You probably want something like this:
import numpy as np
import matplotlib.pyplot as plt
# assuming we are in Jupyter
%matplotlib inline
frequency = np.array(
[ 99912.5, 99925. , 99937.5, 99950. , 99962.5, 99975. ,
99987.5, 100000. , 100012.5, 100025. , 100037.5, 100050. ,
100062.5, 100075. , 100087.5, 100100. ])
intensity = np.array(
[-83.99371 , -81.08232 , -71.8163 , -71.90387 , -79.6107 ,
-80.90104 , -14.79405 , 3.740311 , -0.6665535, -78.68803 ,
-81.49953 , -79.48487 , -74.36191 , -80.68216 , -79.98886 ,
-83.16663 ])
plt.title("Frequency Intensity")
plt.xlabel("Frequency [Hz]")
plt.ylabel("Intensity [dBm]")
plt.plot(frequency, intensity)
x = frequency[7]
y = intensity[7]
plt.plot([x], [y], 'v', color='red', ms=10)
plt.text(x, y, "({:0.2f}, {:0.2f})".format(x, y))
plt.grid()
Upvotes: 0