Reputation: 3679
My query is regrading getting the data, given two timestamp in python.
I need to have a input field, where i can enter the two timestamp, then from the CSV read, i need to retrieve for that particular input.
Actaul Data(CSV)
Daily_KWH_System PowerScout Temperature Timestamp Visibility Daily_electric_cost kW_System
0 4136.900384 P371602077 0 07/09/2016 23:58 0 180.657705 162.224216
1 3061.657187 P371602077 66 08/09/2016 23:59 10 133.693074 174.193804
2 4099.614033 P371602077 63 09/09/2016 05:58 10 179.029562 162.774013
3 3922.490275 P371602077 63 10/09/2016 11:58 10 171.297701 169.230047
4 3957.128982 P371602077 88 11/09/2016 17:58 10 172.806125 164.099307
Example:
Input:
start date : 2-1-2017
end date :10-1-2017
Output
Timestamp Value
2-1-2017 10
3-1-2017 35
.
.
.
.
10-1-2017 25
The original CSV would contain all the data
Timestamp Value
1-12-2016 10
2-12-2016 25
.
.
.
1-1-2017 15
2-1-2017 10
.
.
.
10-1-2017 25
.
.
31-1-2017 50
Upvotes: 1
Views: 5516
Reputation: 862661
It seems you need dayfirst=True
in read_csv
with select by []
if all start and end dates are in df.index
:
import pandas as pd
from pandas.compat import StringIO
temp=u"""Timestamp;Value
1-12-2016;10
2-12-2016;25
1-1-2017;15
2-1-2017;10
10-1-2017;25
31-1-2017;50"""
#after testing replace 'StringIO(temp)' to 'filename.csv'
#if necessary add sep
#index_col=[0] convert first column to index
#parse_dates=[0] parse first column to datetime
df = pd.read_csv(StringIO(temp), sep=";", index_col=[0], parse_dates=[0], dayfirst=True)
print (df)
Value
Timestamp
2016-12-01 10
2016-12-02 25
2017-01-01 15
2017-01-02 10
2017-01-10 25
2017-01-31 50
print (df.index.dtype)
datetime64[ns]
print (df.index)
DatetimeIndex(['2016-12-01', '2016-12-02', '2017-01-01', '2017-01-02',
'2017-01-10', '2017-01-31'],
dtype='datetime64[ns]', name='Timestamp', freq=None)
start_date = pd.to_datetime('2-1-2017', dayfirst=True)
end_date = pd.to_datetime('10-1-2017', dayfirst=True)
print (df[start_date:end_date])
Value
Timestamp
2017-01-02 10
2017-01-10 25
If some dates are not in index you need boolean indexing
:
start_date = pd.to_datetime('3-1-2017', dayfirst=True)
end_date = pd.to_datetime('10-1-2017', dayfirst=True)
print (df[(df.index > start_date) & (df.index > end_date)])
Value
Timestamp
2017-01-31 50
Upvotes: 1
Reputation: 294258
use pd.read_csv
to read the file
df = pd.read_csv('my.csv', index_col='Timestamp', parse_dates=[0])
Then use your inputs to slice
df[start_date:end_date]
Upvotes: 2