Reputation: 689
I have a python dictonary with keys as dates and values as tuple as shown below.
dct = {'01/24/2017 01:10:23.1230':('a',12),
'12/25/2016 10:12:45.128':('b',23),
'11/16/2016 09:39:55.459':('c',45),
'01/12/2017 15:55:20.783':('d',34)}
Wanted to write this into a Dataframe with a constant (userid), something like shown below.
userid Date value1 value2
0 123 '01/24/2017 01:10:23.1230' a 12
1 123 '12/25/2016 10:12:45.128' b 23
2 123 '11/16/2016 09:39:55.459' c 45
3 123 '01/12/2017 15:55:20.783' d 34
tried converting the dictionary to a list or a numpy array to write to Dataframe but the tuple in the dictionary, I am not able to separate them out. Any ideas?
Upvotes: 6
Views: 5799
Reputation: 863531
You can use DataFrame.from_dict
with DataFrame.insert
if need choose position of new column:
d = {'01/24/2017 01:10:23.1230':('a',12),'12/25/2016 10:12:45.128':('b',23),'11/16/2016 09:39:55.459':('c',45),'01/12/2017 15:55:20.783':('d',34)}
df = pd.DataFrame.from_dict(d, orient='index').reset_index()
df.columns = ['Date','value1','value2']
df.insert(0, 'userid', 123)
print (df)
userid Date value1 value2
0 123 01/24/2017 01:10:23.1230 a 12
1 123 12/25/2016 10:12:45.128 b 23
2 123 01/12/2017 15:55:20.783 d 34
3 123 11/16/2016 09:39:55.459 c 45
If need new column to the end of DataFrame
:
df['userid'] = 123
print (df)
Date value1 value2 userid
0 01/24/2017 01:10:23.1230 a 12 123
1 12/25/2016 10:12:45.128 b 23 123
2 01/12/2017 15:55:20.783 d 34 123
3 11/16/2016 09:39:55.459 c 45 123
Or solution with assign
:
df = df.assign(userid=123)
print (df)
Date value1 value2 userid
0 01/24/2017 01:10:23.1230 a 12 123
1 12/25/2016 10:12:45.128 b 23 123
2 01/12/2017 15:55:20.783 d 34 123
3 11/16/2016 09:39:55.459 c 45 123
EDIT by comment:
Use dict comprehension
where add new value 123
:
d1 = {k:(123, v[0], v[1]) for k,v in d.items()}
print (d1)
{'01/24/2017 01:10:23.1230': (123, 'a', 12),
'11/16/2016 09:39:55.459': (123, 'c', 45),
'01/12/2017 15:55:20.783': (123, 'd', 34),
'12/25/2016 10:12:45.128': (123, 'b', 23)}
df = pd.DataFrame.from_dict(d1, orient='index').reset_index()
df.columns = ['Date','userid','value1','value2']
print (df)
Date userid value1 value2
0 01/24/2017 01:10:23.1230 123 a 12
1 11/16/2016 09:39:55.459 123 c 45
2 01/12/2017 15:55:20.783 123 d 34
3 12/25/2016 10:12:45.128 123 b 23
Upvotes: 5
Reputation: 32125
Something like this:
pd.DataFrame(data=dct).T.reset_index()
Out[13]:
index 0 1
0 01/12/2017 15:55:20.783 d 34
1 01/24/2017 01:10:23.1230 a 12
2 11/16/2016 09:39:55.459 c 45
3 12/25/2016 10:12:45.128 b 23
PS: don't use dict
as a variable name or you're superseding the dict class.
Upvotes: 0