Reputation: 11470
I would like to add two new columns to my dataframe by applying a function that takes inputs from multiple, specific pre-existing columns.
Here is my approach which works for returning one column, but not multiple:
Here is my DataFrame:
d = {'a': [3,0,2,2],
'b': [0,1,2,3],
'c': [1,1,2,3],
'd': [2,2,1,3]}
df = pd.DataFrame(d)
I'm trying to apply this function:
def myfunc(a,b,c):
if a > 2 and b > 2:
print('condition 1',a,b)
return pd.Series((a,b))
elif a < 2 and c < 2:
print('condition 2',a,c)
return pd.Series((b,c))
else:
print('no condition')
return pd.Series((None,None))
Like this:
df['e'],df['f'] = df.apply(lambda x: myfunc(x['a'],x['b'],x['c']),axis=1)
Output:
no condition
no condition
condition 2 0 1
no condition
no condition
DataFrame result:
How can I input multiple columns and get multiple columns out?
Upvotes: 2
Views: 401
Reputation: 294516
The issue is with the assignment, not myfunc
When you try to unpack a dataframe as a tuple, it returns the column lables. That's why you get (0, 1) for everything
df['e'], df['f'] = pd.DataFrame([[8, 9]] * 1000000, columns=['Told', 'You'])
print(df)
a b c d e f
0 3 0 1 2 Told You
1 0 1 1 2 Told You
2 2 2 2 1 Told You
3 2 3 3 3 Told You
Use join
df.join(df.apply(lambda x: myfunc(x['a'],x['b'],x['c']),axis=1))
Or pd.concat
pd.concat([df, df.apply(lambda x: myfunc(x['a'],x['b'],x['c']),axis=1)], axis=1)
both give
a b c d e f
0 3 0 1 2 NaN NaN
1 0 1 1 2 1.0 1.0
2 2 2 2 1 NaN NaN
3 2 3 3 3 NaN NaN
Upvotes: 2
Reputation: 32125
Your function is going to return one series with either NAs
or with a 2-tuple when my_funct matched.
One way to fix it is to return Series instead, that will be automatically expanded by apply:
def myfunc(col1,col2,col3):
if col1 == 'x' and col2 == 'y':
return pd.Series((col1,col2))
if col2 == 'a' and col3 == 'b':
return pd.Series(('yes','no'))
Note the double brackets to pass one argument as a tuple. A list would be fine too.
Upvotes: 2