Reputation: 305
I'm converting present Sql Querys to DataFrames using Spark-scala I had Query where I had Multiple Inner Joins to be performed.Actually I can Implement in SqlContext.sql("") but my team is not interested in sqlContext want to perform operations on top of data frames
si s inner join
ac a on s.cid = a.cid and s.sid =a.sid
inner join De d on s.cid = d.cid AND d.aid = a.aid
inner join SGrM sgm on s.cid = sgm.cid and s.sid =sgm.sid and sgm.status=1
inner join SiGo sg on sgm.cid =sg.cid and sgm.gid =sg.gid
inner join bg bu on s.cid = bu.cid and s.sid =bu.sid
inner join ls al on a.AtLId = al.lid
inner join ls rl on a.RtLId = rl.lid
inner join ls vl on a.VLId = vl.lid
From My searching I got to know we can recursively join using
List(df1,df2,df3,dfN).reduce((a, b) => a.join(b, joinCondition))
But I cant satisfy above condition since there are multiple Conditions involved How can I perform this?
Upvotes: 1
Views: 16894
Reputation: 744
Below is an example of joining six tables/dataframes (not using SQL)
retail_db is a well known sample DB, anyone can get it from Google
Problem: //Get all customers from TX who bought fitness items
val df_customers = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "customers").option("user", "root").option("password", "root").load()
val df_products = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "products").option("user", "root").option("password", "root").load()
val df_orders = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "orders"). option("user", "root").option("password", "root").load()
val df_order_items = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "order_items").option("user", "root").option("password", "root").load()
val df_categories = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "categories").option("user", "root").option("password", "root").load()
val df_departments = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "departments").option("user", "root").option("password", "root").load()
val df_order_items_all = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost/retail_db?useSSL=false").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "order_all").option("user", "root").option("password", "root").load()
val jeCustOrd=df_customers.col("customer_id")===df_orders.col("order_customer_id")
val jeOrdItem=df_orders.col("order_id")===df_order_items.col("order_item_order_id")
val jeProdOrdItem=df_products.col("product_id")===df_order_items.col("order_item_product_id")
val jeProdCat=df_products.col("product_category_id")===df_categories.col("category_id")
val jeCatDept=df_categories.col("category_department_id")===df_departments.col("department_id")
// val jeOrdItem=df_orders.col("")===df_order_items.col("")
//Get all customers from TX who bought fitness items
df_customers.where("customer_state = 'TX'").join(df_orders,jeCustOrd).join(df_order_items,jeOrdItem).join(df_products,jeProdOrdItem).join(df_categories,jeProdCat).join(df_departments,jeCatDept).filter("department_name='Fitness'")
.select("customer_id","customer_fname","customer_lname", "customer_street","customer_city","customer_state","customer_zipcode","order_id","category_name","department_name").show(5)
Upvotes: 0
Reputation: 320
You can join multiple dataframes with multiple conditions like below:
val result = df1.as("df1").join(df2.as("df2"),
$"df1.col1"===$df2.col1" && $"df1.col2"===$df2.col2").join(df3.as("df3"),
$"df3.col1"===$df2.col1" && $"df3.col2"===$df2.col2", "left_outer")
Upvotes: 2
Reputation: 1161
First of all, replace DataFrames with DataSet and Spark 2.+ to enable better performance by avoiding JVM objects - re project Tungsten.
Now, to your question: Lets say you have 4 x DS as:
First create schema for your tables:
case class DS (id: Int, colA: String)
Then read files with optimisation enabled:
val ds1 = spark.read.parquet("X1").as[DS]
val ds2 = spark.read.parquet("X2").as[DS]
val ds3 = spark.read.parquet("X3").as[DS]
val ds4 = spark.read.parquet("X4").as[DS]
Now, you can join them one by one so that you can follow the data flow (only use broadcast when you have small table):
case class JoinedDS (colB: String)
val joinedDS = ds1.join(broadcast(ds2), Seq("id"), "inner")
.join(ds3, Seq("id", "colB"), "inner")
.join(ds4, Seq("id"), "inner")
.select(col("colB")
.as[JoinedDS]
Upvotes: 1