Reputation: 755
I am trying to compute in R. I have the following values.
nb <- 100
tb <- 25
ns <- 90
ts <- 15
A0 <- 1
S_norm <- 0.4
R <-tb/ts
y_meas <- (ns-nb/R)/A0
sigma_meas = sqrt(ns+(nb+1)/R^2)/A0
I am very confused on how I can integrate L(psi), say from -10 to 10. Because I am integrating with respect to log A.
Upvotes: 1
Views: 628
Reputation: 20080
On top of an excellent answer by @SandipanDey, if you could extend limits to -Infinity...+Infinity, there is a better way to integrate functions with e-x2 kernel: Gauss-Hermite quadrature, and there is an R package for that.
Simple example:
library(gaussquad)
n.quad <- 128 # integration order
# get the particular (weights,abscissas) as data frame
# with 2 observables and n.quad observations
rule <- ghermite.h.quadrature.rules(n.quad, mu = 0.0)[[n.quad]]
# test function - integrate 1 over exp(-x^2) from -Inf to Inf
# should get sqrt(pi) as an answer
f <- function(x) {
1.0
}
q <- ghermite.h.quadrature(f, rule)
print(q - sqrt(pi))
Upvotes: 1
Reputation: 23101
You can substitute for logA
and for a fixed value of psi
you can integrate as follows:
psi <- 5
integrate(function(x) exp(-0.5*(((x/A0)/S_norm)^2 + ((psi-y_meas*A0/exp(x))/sigma_meas)^2)),
-10, 10)
# 0.1775989 with absolute error < 6.6e-05
Upvotes: 2