Reputation: 13
When I try to solve this first ode by using Sympy as it shows below:
import sympy
y = sympy.Function('y')
t = sympy.Symbol('t')
ode = sympy.Eq(y(t).diff(t),(1/y(t))*sympy.sin(t))
sol = sympy.dsolve(ode,y(t))
csol=sol.subs([(t,0),(y(0),-4)]) # the I.C. is y(0) = 1
ode_sol= sol.subs([(csol.rhs,csol.lhs)])
print(sympy.pprint(ode_sol))
It gives me this error:
Traceback (most recent call last):
File "C:/Users/Mohammed Alotaibi/AppData/Local/Programs/Python/Python35/ODE2.py", line 26, in <module>
csol=sol.subs([(t,0),(y(0),-4)]) # the I.C. is y(0) = 1
AttributeError: 'list' object has no attribute 'subs'
Upvotes: 0
Views: 398
Reputation: 25992
Your problem is that this ODE does not have a unique solution. Thus it returns a list of solution, which you can find out from the error message and by printing sol
.
Do the evaluation in a loop,
for psol in sol:
csol = psol.subs([(t,0),(y(0),-4)]);
ode_sol = psol.subs([(csol.rhs,csol.lhs)]);
print(sympy.pprint(ode_sol))
to find the next error, that substituting does not solve for the constant. What works is to define C1=sympy.Symbol("C1")
and using
ode_sol= psol.subs([(C1, sympy.solve(csol)[0])]);
but this still feels hacky. Or better to avoid error messages for the unsolvability of the second case:
C1=sympy.Symbol("C1");
for psol in sol:
csol = psol.subs([(t,0),(y(0),-4)]);
for cc1 in sympy.solve(csol):
ode_sol= psol.subs([(C1, cc1)]);
print(sympy.pprint(ode_sol))
Upvotes: 1