Reputation: 863
I have a pandas dataframe with a column made of lists.
The goal is to find the min of every list in row (in an efficient way).
E.g.
import pandas as pd
df = pd.DataFrame(columns=['Lists', 'Min'])
df['Lists'] = [ [1,2,3], [4,5,6], [7,8,9] ]
print(df)
The goal is the Min
column:
Lists Min
0 [1, 2, 3] 1
1 [4, 5, 6] 4
2 [7, 8, 9] 7
Thank you in advance,
gil
Upvotes: 5
Views: 7736
Reputation: 863176
You can use apply
with min
:
df['Min'] = df.Lists.apply(lambda x: min(x))
print (df)
Lists Min
0 [1, 2, 3] 1
1 [4, 5, 6] 4
2 [7, 8, 9] 7
Thank you juanpa.arrivillaga for idea:
df['Min'] = [min(x) for x in df.Lists.tolist()]
print (df)
Lists Min
0 [1, 2, 3] 1
1 [4, 5, 6] 4
2 [7, 8, 9] 7
Timings:
##[300000 rows x 2 columns]
df = pd.concat([df]*100000).reset_index(drop=True)
In [144]: %timeit df['Min1'] = [min(x) for x in df.Lists.values.tolist()]
10 loops, best of 3: 137 ms per loop
In [145]: %timeit df['Min2'] = [min(x) for x in df.Lists.tolist()]
10 loops, best of 3: 142 ms per loop
In [146]: %timeit df['Min3'] = [min(x) for x in df.Lists]
10 loops, best of 3: 139 ms per loop
In [147]: %timeit df['Min4'] = df.Lists.apply(lambda x: min(x))
10 loops, best of 3: 170 ms per loop
Upvotes: 9