Reputation: 61
I am new to R and struggling with a problem.
I need a function to impute the missing values in a vector according to the mean value of the elements within a window of a given size.
However, this window will move because, say my NA
is in position 30, and my window size is 10, the mean should be computed for x[20:40]
. So for each found NA
, the window-mean will be different.
I have been trying this:
impute.to.window.mean <- function(x, window) {
na.idx <- is.na(x) #find missing values in x
for (na in na.idx) {
y <- (x[na]-window):(x[na]+window)
na.idx[na] <- mean(y, na.rm = TRUE)
}
return(x)
}
but it is not correct and I don't know how to continue.
Upvotes: 6
Views: 3663
Reputation: 2715
You might want to consider using the imputeTS
package. Here is an example of filling in values with a simple moving average and a window of 4:
x <- rnorm(100)
x[c(7, 21, 33)] <- NA
imputeTS::na_ma(x, k = 4, weighting = "simple")
Upvotes: 3
Reputation: 171
The "Caret" package's preProcess function has a method called "knnImpute" that does exactly that. Give it a go.
Upvotes: 0
Reputation: 270268
Using zoo::rollapply this can be done in one statement. We have used a window of length 5 (2 on either side of the current point) for this example:
library(zoo)
x <- replace(1:20, c(4, 6, 10, 15), NA) # test data
rollapply(c(NA, NA, x, NA, NA), 5,
function(x) if (is.na(x[3])) mean(x, na.rm = TRUE) else x[3])
giving:
[1] 1.000000 2.000000 3.000000 3.333333 5.000000 6.666667 7.000000
[8] 8.000000 9.000000 10.000000 11.000000 12.000000 13.000000 14.000000
[15] 15.000000 16.000000 17.000000 18.000000 19.000000 20.000000
Upvotes: 2
Reputation: 20811
Your indexing is a little off
impute.to.window.mean <- function(x, window) {
na.idx <- which(is.na(x)) #find missing values in x
for (na in na.idx) {
y <- sort(x[(na - window):(na + window)])
x[na] <- mean(y)
}
return(x)
}
Walk through an example
set.seed(1)
x <- sample(10)
na <- 6
x[na] <- NA
# [1] 3 4 5 7 2 NA 9 6 10 1
window <- 3L
I used sort
because it drops the NA
s in one step; you want the mean of this vector which are all the values that fall in window
sort(x[(na - window):(na + window)])
# [1] 2 5 6 7 9 10
mean(sort(x[(na - window):(na + window)]))
# [1] 6.5
Test your function now
impute.to.window.mean(x, window)
# [1] 3.0 4.0 5.0 7.0 2.0 6.5 9.0 6.0 10.0 1.0
Edit
Actually, you should probably use
y <- sort(x[pmax(1L, (na - window)):pmin(length(x), (na + window))])
instead for the case that an NA
occurs at, say, 2, and your window is > 1
## current version
impute.to.window.mean(x, 10)
# Error in x[(na - window):(na + window)] :
# only 0's may be mixed with negative subscripts
## version with pmax/pmin
impute.to.window.mean(x, 10)
# [1] 3.000000 4.000000 5.000000 7.000000 2.000000 5.222222 9.000000 6.000000 10.00000 1.000000
mean(sort(x))
# [1] 5.222222
impute.to.window.mean <- function(x, window) {
na.idx <- which(is.na(x)) #find missing values in x
for (na in na.idx) {
# y <- sort(x[(na - window):(na + window)])
y <- sort(x[pmax(1L, (na - window)):pmin(length(x), (na + window))])
x[na] <- mean(y)
}
return(x)
}
Upvotes: 0
Reputation: 6020
with R base:
df <- data.frame(x = sample(c(1:10,NA),1000, replace = T))
window <- 10
lapply(1:(nrow(df)-window), function(x) ifelse(is.na(df[x,'x']),mean(df[x:(x+10),'x'],na.rm=T),df[x,'x']))
Only difference I have that I now look forward for the values. But you can alter that to your specifications.
Upvotes: 0