Reputation: 1
I'm using R to do my data analysis. I'm looking for the code to achieve the below mentioned output.
I need a single piece of code to do this as I have over 500 groups & 24 months in my actual data. The below sample has only 2 groups & 2 months.
This is a sample of my data.
Date Group Value
1-Jan-16 A 10
2-Jan-16 A 12
3-Jan-16 A 17
4-Jan-16 A 20
5-Jan-16 A 12
5-Jan-16 B 56
1-Jan-16 B 78
15-Jan-16 B 97
20-Jan-16 B 77
21-Jan-16 B 86
2-Feb-16 A 91
2-Feb-16 A 44
3-Feb-16 A 93
4-Feb-16 A 87
5-Feb-16 A 52
5-Feb-16 B 68
1-Feb-16 B 45
15-Feb-16 B 100
20-Feb-16 B 81
21-Feb-16 B 74
And this is the output I'm looking for.
Month Year Group Minimum Value 5th Percentile 10th Percentile 50th Percentile 90th Percentile Max Value
Jan 2016 A
Jan 2016 B
Feb 2016 A
Feb 2016 B
Upvotes: 0
Views: 2074
Reputation: 2496
considering dft
as your input, you can try:
library(dplyr)
dft %>%
mutate(Date = as.Date(Date, format = "%d-%b-%y")) %>%
mutate(mon = month(Date),
yr = year(Date)) %>%
group_by(mon,yr,Group) %>%
mutate(minimum = min(Value),
maximum = max(Value),
q95 = quantile(Value, 0.95)) %>%
select(minimum, maximum, q95) %>%
unique()
which gives:
mon yr Group minimum maximum q95
<int> <int> <chr> <int> <int> <dbl>
1 1 2016 A 10 20 19.4
2 1 2016 B 56 97 94.8
3 2 2016 A 44 93 92.6
4 2 2016 B 45 100 96.2
and add more variables as per your need.
Upvotes: 1