Reputation: 1115
I've tried several methods of loading the google news word2vec vectors (https://code.google.com/archive/p/word2vec/):
en_nlp = spacy.load('en',vector=False)
en_nlp.vocab.load_vectors_from_bin_loc('GoogleNews-vectors-negative300.bin')
The above gives:
MemoryError: Error assigning 18446744072820359357 bytes
I've also tried with the .gz packed vectors; or by loading and saving them with gensim to a new format:
from gensim.models.word2vec import Word2Vec
model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.save_word2vec_format('googlenews2.txt')
This file then contains the words and their word vectors on each line. I tried to load them with:
en_nlp.vocab.load_vectors('googlenews2.txt')
but it returns "0".
What is the correct way to do this?
Update:
I can load my own created file into spacy. I use a test.txt file with "string 0.0 0.0 ...." on each line. Then zip this txt with .bzip2 to test.txt.bz2. Then I create a spacy compatible binary file:
spacy.vocab.write_binary_vectors('test.txt.bz2', 'test.bin')
That I can load into spacy:
nlp.vocab.load_vectors_from_bin_loc('test.bin')
This works! However, when I do the same process for the googlenews2.txt, I get the following error:
lib/python3.6/site-packages/spacy/cfile.pyx in spacy.cfile.CFile.read_into (spacy/cfile.cpp:1279)()
OSError:
Upvotes: 23
Views: 20864
Reputation: 933
it is much easier to use the gensim api for dowloading the word2vec compressed model by google, it will be stored in /home/"your_username"/gensim-data/word2vec-google-news-300/
. Load the vectors and play ball. I have 16GB of RAM which is more than enough to handle the model
import gensim.downloader as api
model = api.load("word2vec-google-news-300") # download the model and return as object ready for use
word_vectors = model.wv #load the vectors from the model
Upvotes: 2
Reputation: 1115
For spacy 1.x, load Google news vectors into gensim and convert to a new format (each line in .txt contains a single vector: string, vec):
from gensim.models.word2vec import Word2Vec
from gensim.models import KeyedVectors
model = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.wv.save_word2vec_format('googlenews.txt')
Remove the first line of the .txt:
tail -n +2 googlenews.txt > googlenews.new && mv -f googlenews.new googlenews.txt
Compress the txt as .bz2:
bzip2 googlenews.txt
Create a SpaCy compatible binary file:
spacy.vocab.write_binary_vectors('googlenews.txt.bz2','googlenews.bin')
Move the googlenews.bin to /lib/python/site-packages/spacy/data/en_google-1.0.0/vocab/googlenews.bin of your python environment.
Then load the wordvectors:
import spacy
nlp = spacy.load('en',vectors='en_google')
or load them after later:
nlp.vocab.load_vectors_from_bin_loc('googlenews.bin')
Upvotes: 26
Reputation: 902
I am using spaCy v2.0.10.
Create a SpaCy compatible binary file:
spacy.vocab.write_binary_vectors('googlenews.txt.bz2','googlenews.bin')
I want to highlight that the specific code in the accepted answer is not working now. I encountered "AttributeError: ..." when I run the code.
This has changed in spaCy v2. write_binary_vectors
was removed in v2. From spaCy documentations, the current way to do this is as follows:
$ python -m spacy init-model en /path/to/output -v /path/to/vectors.bin.tar.gz
Upvotes: 2
Reputation: 731
I know that this question has already been answered, but I am going to offer a simpler solution. This solution will load google news vectors into a blank spacy nlp object.
import gensim
import spacy
# Path to google news vectors
google_news_path = "path\to\google\news\\GoogleNews-vectors-negative300.bin.gz"
# Load google news vecs in gensim
model = gensim.models.KeyedVectors.load_word2vec_format(gn_path, binary=True)
# Init blank english spacy nlp object
nlp = spacy.blank('en')
# Loop through range of all indexes, get words associated with each index.
# The words in the keys list will correspond to the order of the google embed matrix
keys = []
for idx in range(3000000):
keys.append(model.index2word[idx])
# Set the vectors for our nlp object to the google news vectors
nlp.vocab.vectors = spacy.vocab.Vectors(data=model.syn0, keys=keys)
>>> nlp.vocab.vectors.shape
(3000000, 300)
Upvotes: 12