Reputation: 167
I have a simple hazard function, the line causing the error is marked.
h <- function(t,u) {
x <- 1 - Sa(t)
y <- 1 - Sm(u)
invx <- as.numeric(qt(x,df=d1))
invy <- as.numeric(qt(x,df=d1))
[ERROR LINE] copula <- pmvt(lower=as.numeric(cbind(-9999,-9999)),upper=cbind(invx,invy),df=d1,corr=matrix(cbind(1,d2,d2,1),byrow=T,ncol=2) )
density <- dmvt(cbind(invx,invy),sigma=matrix(cbind(1,d2,d2,1),byrow=T,ncol=2),df=d1)
num <- (sa(t)*sm(u))*density/dt(invx,df=d1)/dt(invy,df=d1)
den <- 1 - x - y + copula
hazard <- num/den
return(hazard)
}
This hazard function is then called on by a likelihood function:
# log Likelihood function for each individual car i
lli <- function(data) {
result <- 0;
# for all claims, evaluate hazard function at that point
if (nrow(data)> 2) {
for (k in 1:nrow(data)) {
if (data[k,3] == 1) {
result <- result + log(h(data[k,2],data[k,1]));
}
}
}
# integrate hazard function over areas between claims
for (k in 1:(nrow(data)-1)) {
integral <- quad2d(h,data[k,2],data[k+1,2],data[k,1],data[k+1,1]);
result <- result - integral;
}
return(result)
}
Now this likelihood function is then called on by a third function to use over my entire data set; however it is the above function that is causing the error, not the function below
# log Likelihood function over all vehicles
ll <- function(x) {
# Unpack parameters
d1 <<- x[1];
d2 <<- x[2];
total <- 0;
# Get log Likelihood for each vehicle
for (i in 1:length(alldata)) {
total <- total + lli(alldata[[i]]);
#print(sprintf("Found candidate solution %d value: %f",i,total));
}
#print(sprintf("Found candidate solution value: %f",total));
if (is.nan(total)) { #If it is undefined, make it a large negative number
total <- -2147483647 ;
}
return(-1*total); # Minimise instead of maximise
}
Error message is as follows:
> ll(cbind(50,0.923))
Error in checkmvArgs(lower = lower, upper = upper, mean = delta, corr = corr, :
‘diag(corr)’ and ‘lower’ are of different length
I kept getting this same error when using pmvnorm, and ended up having to use the pbivnorm package to get around this. I can't find an alternative package for the bivariate t distribution though. I don't understand what the problem is. When I call the function h(t,u) by itself it executes without a problem. But when lli(data) calls h(t,u), it doesn't work. What's even more bizarre is that they are the same length.
> length(as.numeric(cbind(-9999,-9999)))
[1] 2
> length(diag(matrix(cbind(1,d2,d2,1),byrow=T,ncol=2)))
[1] 2
I apologize for the messy code. I don't use R much. Anyway this has me completely stumped.
Data file is here: https://files.fm/u/yx9pw2b3
Additional code I forgot to include, basically some constants and marginal CDF functions:
Marginals.R:
p1 <- 0.4994485;
p2 <- 0.2344439;
p3 <- 0.1151654;
p4 <- 0.1509421;
b1 <- 0.7044292
t1 <- 1713.3170267
mu1 <- 7.014415
sig1 <- 1.394735
mu2 <- 6.926146
sig2 <- 1.056647
mu3 <- 6.7995896
sig3 <- 0.7212853
b2 <- 0.6444582
t2 <- 762.9962093
b3 <- 1.494303
t3 <- 410.828780
b1 <- 0.903
t1 <- 864.896
b2 <- 0.9109
t2 <- 314.2946
# Marginal survival distribution and density
Sa <- function(t) {return(exp(-(t / t1) ** b1))}
Sm <- function(u) {return(exp(-(u / t2) ** b2))}
sa <- function(t) {return((t / t1) ** b1 * b1 * exp(-(t / t1) ** b1) / t ) }
sm <- function(u) {return((u / t2) ** b2 * b2 * exp(-(u / t2) ** b2) / u ) }
Upvotes: 1
Views: 1125
Reputation: 1019
Summary:
The problem is the difference length between lower
and upper
when calling pvmt
, which upper
has a length of 2048, while lower
has length of 2.
Reasoning:
1. pmvt
checks the coming parameters by calling checkmvArgs
in mvtnorm
package.
2. In checkmvArgs
, lower
, upper
and mean
have been put together by rec <- cbind(lower, upper, mean)
. Here the new data rec
has 2048 row instead of 2.
3. lower
is then replace by lower <- rec[, "lower"]
, which lower
now has length 2048 instead of 2.
4. Given corr
is still a 2 * 2 matrix, error occurs when checking length(corr) != length(lower)
Solution:
invx <- as.numeric(qt(x,df=d1))
invy <- as.numeric(qt(x,df=d1))
upper
mean to be a length 2 vector, hence invx
and invy
needs to be single numbers.
As not sure what's the upper range you want to define, I cannot solve it further. Possible one is :
invx <- as.numeric(qt(x,df=d1))
invy <- as.numeric(qt(x,df=d1))
copula <- pmvt(lower=as.numeric(cbind(-9999,-9999)),upper=range(c(invx,invy)),df=d1,corr=matrix(c(1,d2,d2,1),byrow=T,ncol=2) )
Which is using the range of invx
and invy
as the input. Hence the dmvt
would not be affect.
Note:
As value a
is not provided, the next line below (calling dmvt
) the error line failed.
Edit:
To make the issue more specific:
1. quad2d
will generate a Gauss-Legendre Quadrature which will be created by default a length of 32 on a given range. And,
2. Your function h
is then called with the x and y from this Gauss-Legendre Quadrature. Hence, the t
and u
defined in h
is not a single mumber, instead, it is a vector.
Upvotes: 2