Reputation: 2292
I updated my TF to v1.0rc1, and Estimator.evaluate
does not work anymore because it froze at Restoring model...
. I tried to reproduce this problem and the following sample code will make TF froze with a 220% (2CPU) CPU usage and no output at all. Any idea why this happen? Thanks!
import tensorflow as tf
from tensorflow.contrib.layers.python.layers.optimizers import optimize_loss
from tensorflow.contrib.learn.python.learn.estimators import model_fn
from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator
from tensorflow.python.framework import ops
def main(_):
def func(features, targets, mode, params):
idx = tf.concat([features['a'], features['b']], axis=1)
embedding = tf.get_variable("embed", [10, 20], dtype=tf.float32)
pred = tf.reduce_sum(tf.nn.embedding_lookup(embedding, idx))
train_op = optimize_loss(loss=pred,
global_step=tf.train.get_global_step(),
learning_rate=0.001,
optimizer='Adam',
variables=tf.trainable_variables(),
name="training_loss_optimizer")
eval_metric_dict = dict()
eval_metric_dict['metric'] = pred
return model_fn.ModelFnOps(mode=mode,
predictions=pred,
loss=pred,
train_op=train_op,
eval_metric_ops=eval_metric_dict)
model = Estimator(func, params={})
model.fit(
input_fn=lambda: (
{'a': ops.convert_to_tensor([[1, 2, 3, 4, 5]]), 'b': ops.convert_to_tensor([[2, 3, 4, 3, 5]])},
None), steps=1)
model.evaluate(
input_fn=lambda: (
{'a': ops.convert_to_tensor([[1, 2, 3, 4, 5]]), 'b': ops.convert_to_tensor([[2, 3, 4, 3, 5]])},
None))
if __name__ == "__main__":
tf.app.run()
Upvotes: 1
Views: 281
Reputation: 5808
By default Estimator.evaluate
assumes queue-based input, and will continue evaluating until the input pipeline is exhausted. When there is no queue-based input, this means it will loop forever. The fix is easy: simply provide a steps
argument to evaluate
.
Upvotes: 1