Reputation: 861
I have to find out the integral solution of a equation ax+by=c
such that x>=0
and y>=0
and value of (x+y) is minimum
.
I know if c%gcd(a,b)}==0
then it's always possible. How to find the values of x and y?
My approach
for(i 0 to 2*c):
x=i
y= (c-a*i)/b
if(y is integer)
ans = min(ans,x+y)
Is there any better way to do this ? Having better time complexity.
Upvotes: 3
Views: 355
Reputation: 51998
Using the Extended Euclidean Algorithm and the theory of linear Diophantine equations there is no need to search. Here is a Python 3 implementation:
def egcd(a,b):
s,t = 1,0 #coefficients to express current a in terms of original a,b
x,y = 0,1 #coefficients to express current b in terms of original a,b
q,r = divmod(a,b)
while(r > 0):
a,b = b,r
old_x, old_y = x,y
x,y = s - q*x, t - q*y
s,t = old_x, old_y
q,r = divmod(a,b)
return b, x ,y
def smallestSolution(a,b,c):
d,x,y = egcd(a,b)
if c%d != 0:
return "No integer solutions"
else:
u = a//d #integer division
v = b//d
w = c//d
x = w*x
y = w*y
k1 = -x//v if -x % v == 0 else 1 + -x//v #k1 = ceiling(-x/v)
x1 = x + k1*v # x + k1*v is solution with smallest x >= 0
y1 = y - k1*u
if y1 < 0:
return "No nonnegative integer solutions"
else:
k2 = y//u #floor division
x2 = x + k2*v #y-k2*u is solution with smallest y >= 0
y2 = y - k2*u
if x2 < 0 or x1+y1 < x2+y2:
return (x1,y1)
else:
return (x2,y2)
Typical run:
>>> smallestSolution(1001,2743,160485)
(111, 18)
The way it works: first use the extended Euclidean algorithm to find d = gcd(a,b)
and one solution, (x,y)
. All other solutions are of the form (x+k*v,y-k*u)
where u = a/d
and v = b/d
. Since x+y
is linear, it has no critical points, hence is minimized in the first quadrant when either x
is as small as possible or y
is as small as possible. The k
above is an arbitrary integer parameter. By appropriate use of floor
and ceiling
you can locate the integer points with either x
as small as possible or y
is as small as possible. Just take the one with the smallest sum.
On Edit: My original code used the Python function math.ceiling
applied to -x/v
. This is problematic for very large integers. I tweaked it so that the ceiling is computed with just int operations. It can now handle arbitrarily large numbers:
>>> a = 236317407839490590865554550063
>>> b = 127372335361192567404918884983
>>> c = 475864993503739844164597027155993229496457605245403456517677648564321
>>> smallestSolution(a,b,c)
(2013668810262278187384582192404963131387, 120334243940259443613787580180)
>>> x,y = _
>>> a*x+b*y
475864993503739844164597027155993229496457605245403456517677648564321
Most of the computation takes place in the running the extended Euclidean algorithm, which is known to be O(min(a,b))
.
Upvotes: 5
Reputation: 51845
First let assume a,b,c>0
so:
a.x+b.y = c
x+y = min(xi+yi)
x,y >= 0
a,b,c > 0
------------------------
x = ( c - b.y )/a
y = ( c - a.x )/b
c - a.x >= 0
c - b.y >= 0
c >= b.y
c >= a.x
x <= c/x
y <= c/b
So naive O(n)
solution is in C++ like this:
void compute0(int &x,int &y,int a,int b,int c) // naive
{
int xx,yy;
xx=-1; yy=-1;
for (y=0;;y++)
{
x = c - b*y;
if (x<0) break; // y out of range stop
if (x%a) continue; // non integer solution
x/=a; // remember minimal solution
if ((xx<0)||(x+y<=xx+yy)) { xx=x; yy=y; }
}
x=xx; y=yy;
}
if no solution found it returns -1,-1
If you think about the equation a bit then you should realize that min solution will be when x
or y
is minimal (which one depends on a<b
condition) so adding such heuristics we can increase only the minimal coordinate until first solution found. This will speed up considerably the whole thing:
void compute1(int &x,int &y,int a,int b,int c)
{
if (a<=b){ for (x=0,y=c;y>=0;x++,y-=a) if (y%b==0) { y/=b; return; } }
else { for (y=0,x=c;x>=0;y++,x-=b) if (x%a==0) { x/=a; return; } }
x=-1; y=-1;
}
I measured this on my setup:
x y ax+by x+y a=50 b=105 c=500000000
[ 55.910 ms] 10 4761900 500000000 4761910 naive
[ 0.000 ms] 10 4761900 500000000 4761910 opt
x y ax+by x+y a=105 b=50 c=500000000
[ 99.214 ms] 4761900 10 500000000 4761910 naive
[ 0.000 ms] 4761900 10 500000000 4761910 opt
The ~2.0x
difference for naive method times is due to a/b=~2.0
and selecting worse coordinate to iterate in the second run.
Now just handle special cases when a,b,c
are zero (to avoid division by zero)...
Upvotes: 0