Reputation: 1057
I would like to calculate the loglikelihood of multivariate normal distribution.
Data:
data = np.random.multivariate_normal(mean=[2,5], cov=[[1, 0], [0, 10]], size=1000)
Likelihood (I followed Wikipedia):
def likelihood(mean, cov):
# mean = np.array([y1, y2]), cov = np.array([[c1, 0], [0, c2]])
loglikelihood = -0.5*( np.log(np.linalg.det(cov)) + (data - mean).transpose() * np.linalg.inv(cov) * (data - mean) + 2 * np.log(2 * np.pi) )
loglikelihoodsum = loglikelihood.sum()
return loglikelihoodsum
It returns following error:
> likelihood(mean, cov)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-54-3b20c2eefea4> in <module>()
----> 1 likelihood(mean, cov)
<ipython-input-53-8a2a7219131c> in likelihood(mean, cov)
2 # param = mean[y1, y2], cov = [[c1, 0], [0, c2]]
3
----> 4 loglikelihood = -0.5*( np.log(np.linalg.det(cov)) + (data - mean).transpose() * np.linalg.inv(cov) * (data - mean) + 2 * np.log(2 * np.pi) )
5
6 loglikelihoodsum = loglikelihood.sum()
ValueError: operands could not be broadcast together with shapes (2,1000) (2,2)
How can I fix it?
Upvotes: 0
Views: 13061
Reputation: 9887
Multiplication with the *
operator in numpy
refers to elementwise multiplication. You want to compute the inner product instead using np.einsum
:
mean = np.random.normal(0, 1, 2)
cov = np.random.normal(0, 1, (2, 2))
data = np.random.normal(0, 1, (1000, 2))
residuals = data - mean
loglikelihood = -0.5 * (
np.log(np.linalg.det(cov))
+ np.einsum('...j,jk,...k', residuals, np.linalg.inv(cov), residuals)
+ len(mean) * np.log(2 * np.pi)
)
np.sum(loglikelihood)
Upvotes: 0
Reputation: 1057
I find an answer:
def likelihood(mean, cov): # Wikipedia
def calc_loglikelihood(residuals):
return -0.5 * (np.log(np.linalg.det(cov)) + residuals.T.dot(np.linalg.inv(cov)).dot(residuals) + 2 * np.log(2 * np.pi))
# mean = np.array([y1, y2]), cov = np.array([[c1, 0], [0, c2]])
residuals = (data - mean)
loglikelihood = np.apply_along_axis(calc_loglikelihood, 1, residuals)
loglikelihoodsum = loglikelihood.sum()
return loglikelihoodsum
Upvotes: 2