Reputation: 115
I have a pandas.DataFrame
indexed by time, as seen below. The time is in Epoch time. When I graph the second column these time values display along the x-axis. I want a more readable time in minutes:seconds.
In [13]: print df.head()
Time
1481044277379 0.581858
1481044277384 0.581858
1481044277417 0.581858
1481044277418 0.581858
1481044277467 0.581858
I have tried some pandas functions, and some methods for converting the whole column, I visited: Pandas docs, this question and the cool site.
I am using pandas 0.18.1
Upvotes: 2
Views: 2112
Reputation: 49794
You can convert an epoch timestamp to HH:MM with:
import datetime as dt
hours_mins = dt.datetime.fromtimestamp(1347517370).strftime('%H:%M')
Adding a column to your pandas.DataFrame
can be done as:
df['H_M'] = pd.Series([dt.datetime.fromtimestamp(int(ts)).strftime('%H:%M')
for ts in df['timestamp']]).values
Upvotes: 3
Reputation: 3719
If you read your data with read_csv
you can use a custom dateparser:
import pandas as pd
#example.csv
'''
Time,Value
1481044277379,0.581858
1481044277384,0.581858
1481044277417,0.581858
1481044277418,0.581858
1481044277467,0.581858
'''
def dateparse(time_in_secs):
time_in_secs = time_in_secs/1000
return datetime.datetime.fromtimestamp(float(time_in_secs))
dtype= {"Time": float, "Value":float}
df = pd.read_csv("example.csv", dtype=dtype, parse_dates=["Time"], date_parser=dateparse)
print df
Upvotes: 3