Reputation: 1537
I need to resize an image to certain size and save it to file, so I chose tf.image.resize_image_with_crop_or_pad function:
import tensorflow as tf
image_decoded = tf.image.decode_jpeg(tf.read_file('1.jpg'), channels=3)
cropped = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
tf.write_file('2.jpg', cropped)
Failed with errors:
Traceback (most recent call last):
File "/home/test/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 490, in apply_op
preferred_dtype=default_dtype)
File "/home/test/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 669, in convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/home/test/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 583, in _TensorTensorConversionFunction
% (dtype.name, t.dtype.name, str(t)))
ValueError: Tensor conversion requested dtype string for Tensor with dtype uint8: 'Tensor("control_dependency_3:0", shape=(200, 200, 3), dtype=uint8)'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train.py", line 15, in <module>
tf.write_file('2.jpg', cropped)
File "/home/test/anaconda3/lib/python3.5/site-packages/tensorflow/python/ops/gen_io_ops.py", line 694, in write_file
contents=contents, name=name)
File "/home/test/anaconda3/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 508, in apply_op
(prefix, dtypes.as_dtype(input_arg.type).name))
TypeError: Input 'contents' of 'WriteFile' Op has type uint8 that does not match expected type of string.
I tried to convert the Tensor to string using tf.as_string() but crashed with:
TypeError: DataType uint8 for attr 'T' not in list of allowed values: int32, int64, complex64, float32, float64, bool, int8
I use Tensorflow v0.12.0-rc0 on Linux Mint
Upvotes: 2
Views: 7609
Reputation: 5945
You first need to encode the image from a tensor to a jpeg and then save it. Moreover, you should execute a session to evaluate your code:
import tensorflow as tf
image_decoded = tf.image.decode_jpeg(tf.read_file('1.jpg'), channels=3)
cropped = tf.image.resize_image_with_crop_or_pad(image_decoded, 200, 200)
enc = tf.image.encode_jpeg(cropped)
fname = tf.constant('2.jpg')
fwrite = tf.write_file(fname, enc)
sess = tf.Session()
result = sess.run(fwrite)
EDIT: Same thing with TensorFlow 2 (compatibility mode)
fname = '2.jpg'
with tf.compat.v1.Session() as sess:
image_decoded = tf.image.decode_jpeg(tf.io.read_file('1.jpg'), channels=3)
cropped = tf.image.resize_with_crop_or_pad(image_decoded, 200, 200)
enc = tf.image.encode_jpeg(cropped)
fwrite = tf.io.write_file(tf.constant(fname), enc)
result = sess.run(fwrite)
Upvotes: 6