Reputation: 366
I am trying to use the scatter_nd function in TensorFlow to reorder elements within rows of a Matrix. For example, suppose I have the code:
indices = tf.constant([[1],[0]])
updates = tf.constant([ [5, 6, 7, 8],
[1, 2, 3, 4] ])
shape = tf.constant([2, 4])
scatter1 = tf.scatter_nd(indices, updates, shape)
$ print(scatter1) = [[1,2,3,4]
[5,6,7,8]]
This reorders the rows of the updates
matrix.
Instead of only being able to reorder the rows, I'd like to reorder the individual elements within each row as well. If I just have a vector (Tensor of rank 1), then this example works:
indices = tf.constant([[1],[0],[2],[3]])
updates = tf.constant([5, 6, 7, 8])
shape = tf.constant([4])
scatter2 = tf.scatter_nd(indices, updates, shape)
$ print(scatter2) = [6,5,7,8]
What I really care about is to be able to swap elements within each row in scatter1
, as I had done in scatter2
, but do it for each row of scatter1
. I've tried various combinations of indices
but keep getting errors that the sizes are inconsistent thrown by the scatter_nd
function.
Upvotes: 1
Views: 3584
Reputation: 7130
Suppose you want to swap elements in the second dimension either keeping the first dimension order or not.
import tensorflow as tf
sess = tf.InteractiveSession()
def prepare_fd(fd_indices, sd_dims):
fd_indices = tf.expand_dims(fd_indices, 1)
fd_indices = tf.tile(fd_indices, [1, sd_dims])
return fd_indices
# define the updates
updates = tf.constant([[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34]])
sd_dims = tf.shape(updates)[1]
sd_indices = tf.constant([[1, 0, 2, 3], [0, 2, 1, 3], [0, 1, 3, 2]])
fd_indices_range = tf.range(0, limit=tf.shape(updates)[0])
fd_indices_custom = tf.constant([2, 0, 1])
# define the indices
indices1 = tf.stack((prepare_fd(fd_indices_range, sd_dims), sd_indices), axis=2)
indices2 = tf.stack((prepare_fd(fd_indices_custom, sd_dims), sd_indices), axis=2)
# define the shape
shape = tf.shape(updates)
scatter1 = tf.scatter_nd(indices1, updates, shape)
scatter2 = tf.scatter_nd(indices2, updates, shape)
print(scatter1.eval())
# array([[12, 11, 13, 14],
# [21, 23, 22, 24],
# [31, 32, 34, 33]], dtype=int32)
print(scatter2.eval())
# array([[21, 23, 22, 24],
# [31, 32, 34, 33],
# [12, 11, 13, 14]], dtype=int32)
May this example help.
Upvotes: 0
Reputation: 303
The following swaps the elements of each row of each row using scatter_nd
indices = tf.constant([[[0, 1], [0, 0], [0, 2], [0, 3]],
[[1, 1], [1, 0], [1, 2], [1, 3]]])
updates = tf.constant([ [5, 6, 7, 8],
[1, 2, 3, 4] ])
shape = tf.constant([2, 4])
scatter1 = tf.scatter_nd(indices, updates, shape)
with tf.Session() as sess:
print(sess.run(scatter1))
Giving an output of:
[[6 5 7 8]
[2 1 3 4]]
The locations of the coordinate in indices
define where the values are being taken from in updates
and the actual cordinates define where the values will be placed in scatter1
.
This answer is a few months late but hopefully still helpful.
Upvotes: 1