Reputation: 363
Question
In this datafile, the United States is broken up into four regions using the "REGION" column.
Create a query that finds the counties that belong to regions 1 or 2, whose name starts with 'Washington', and whose POPESTIMATE2015 was greater than their POPESTIMATE 2014.
This function should return a 5x2 DataFrame with the columns = ['STNAME', 'CTYNAME'] and the same index ID as the census_df (sorted ascending by index).
CODE
def answer_eight():
counties=census_df[census_df['SUMLEV']==50]
regions = counties[(counties[counties['REGION']==1]) | (counties[counties['REGION']==2])]
washingtons = regions[regions[regions['COUNTY']].str.startswith("Washington")]
grew = washingtons[washingtons[washingtons['POPESTIMATE2015']]>washingtons[washingtons['POPESTIMATES2014']]]
return grew[grew['STNAME'],grew['COUNTY']]
outcome = answer_eight()
assert outcome.shape == (5,2)
assert list (outcome.columns)== ['STNAME','CTYNAME']
print(tabulate(outcome, headers=["index"]+list(outcome.columns),tablefmt="orgtbl"))
ERROR
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-77-546e58ae1c85> in <module>()
6 return grew[grew['STNAME'],grew['COUNTY']]
7
----> 8 outcome = answer_eight()
9 assert outcome.shape == (5,2)
10 assert list (outcome.columns)== ['STNAME','CTYNAME']
<ipython-input-77-546e58ae1c85> in answer_eight()
1 def answer_eight():
2 counties=census_df[census_df['SUMLEV']==50]
----> 3 regions = counties[(counties[counties['REGION']==1]) | (counties[counties['REGION']==2])]
4 washingtons = regions[regions[regions['COUNTY']].str.startswith("Washington")]
5 grew = washingtons[washingtons[washingtons['POPESTIMATE2015']]>washingtons[washingtons['POPESTIMATES2014']]]
/opt/conda/lib/python3.5/site-packages/pandas/core/frame.py in __getitem__(self, key)
1991 return self._getitem_array(key)
1992 elif isinstance(key, DataFrame):
-> 1993 return self._getitem_frame(key)
1994 elif is_mi_columns:
1995 return self._getitem_multilevel(key)
/opt/conda/lib/python3.5/site-packages/pandas/core/frame.py in _getitem_frame(self, key)
2066 def _getitem_frame(self, key):
2067 if key.values.size and not com.is_bool_dtype(key.values):
-> 2068 raise ValueError('Must pass DataFrame with boolean values only')
2069 return self.where(key)
2070
ValueError: Must pass DataFrame with boolean values only
I am clueless. Where am I going wrong?
Thanks
Upvotes: 8
Views: 29755
Reputation: 3
I solved it in this way (I have not used any Local variables directly accessed census_df in a single line) Solution is the Pretty much the same as you see the other solutions, but in the other solutions, they have used the local variables in my solutions I have not used it.
def answer_eight():
return census_df[
(census_df['SUMLEV'] == 50) &
((census_df["REGION"] == 1) | (census_df["REGION"] == 2)) &
(census_df["CTYNAME"].str.lower()).str.startswith('washington') &
(census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
][["STNAME","CTYNAME"]]
Upvotes: 0
Reputation: 11
I solved the problem at Coursera like this.
def answer_eight():
df8 = census_df.copy()
washington = df8['CTYNAME'].str[0:10] == 'Washington'
popincrease = df8['POPESTIMATE2015']) > (df8['POPESTIMATE2014']
region = (df8['REGION'] == 1) | (df8['REGION'] == 2)
df8 = df8[region & popincrease & washington]
return df8[{'STNAME','CTYNAME'}]
answer_eight()
I was a beginner in Pandas back then and it took me almost 20 LOLs.
Upvotes: 0
Reputation: 1
def answer_eight():
df=census_df
region1=df[ df['REGION']==1 ]
region2=df[ df['REGION']==2 ]
yes_1=region1[ region1['POPESTIMATE2015'] > region1['POPESTIMATE2014']]
yes_2=region2[ region2['POPESTIMATE2015'] > region2['POPESTIMATE2014']]
yes_1=yes_1[ yes_1['CTYNAME']=='Washington County' ]
yes_2=yes_2[ yes_2['CTYNAME']=='Washington County' ]
ans=yes_1[ ['STNAME','CTYNAME'] ]
ans=ans.append(yes_2[ ['STNAME','CTYNAME'] ])
return ans.sort()
Upvotes: 0
Reputation: 53
def answer_eight():
county = census_df[census_df['SUMLEV']==50]
req_col = ['STNAME','CTYNAME']
region = county[(county['REGION']<3) & (county['POPESTIMATE2015']>county['POPESTIMATE2014']) & (county['CTYNAME'].str.startswith('Washington'))]
region = region[req_col]
return region
answer_eight()
Upvotes: 0
Reputation: 11
def answer_eight():
df=census_df[census_df['SUMLEV']==50]
#df=census_df
df=df[(df['REGION']==1) | (df['REGION']==2)]
df=df[df['CTYNAME'].str.startswith('Washington')]
df=df[df['POPESTIMATE2015'] > df['POPESTIMATE2014']]
df=df[['STNAME','CTYNAME']]
print(df.shape)
return df.head(5)
Upvotes: 1
Reputation: 393933
You're trying to use a different shaped df to mask your df, this is wrong, additionally the way you're passing the conditions is being used incorrectly. When you compare a column or series in a df with a scalar to produce a boolean mask you should pass just the condition, not use this successively.
def answer_eight():
counties=census_df[census_df['SUMLEV']==50]
# this is wrong you're passing the df here multiple times
regions = counties[(counties[counties['REGION']==1]) | (counties[counties['REGION']==2])]
# here you're doing it again
washingtons = regions[regions[regions['COUNTY']].str.startswith("Washington")]
# here you're doing here again also
grew = washingtons[washingtons[washingtons['POPESTIMATE2015']]>washingtons[washingtons['POPESTIMATES2014']]]
return grew[grew['STNAME'],grew['COUNTY']]
you want:
def answer_eight():
counties=census_df[census_df['SUMLEV']==50]
regions = counties[(counties['REGION']==1]) | (counties['REGION']==2])]
washingtons = regions[regions['COUNTY'].str.startswith("Washington")]
grew = washingtons[washingtons['POPESTIMATE2015']>washingtons['POPESTIMATES2014']]
return grew[['STNAME','COUNTY']]
Upvotes: 6