Reputation: 7730
Here is my code:
import numpy as np
from scipy.cluster.hierarchy import fclusterdata
def mydist(p1,p2):
return 1
Y = np.random.randn(100000,2)
fclust1 = fclusterdata(Y, 1.0, metric=mydist)
It produces the following error:
MemoryError Traceback (most recent call last)
<ipython-input-52-818db8791e96> in <module>()
----> 1 fclust1 = fclusterdata(Y, 1.0, metric=mydist)
C:\Anaconda3\lib\site-packages\scipy\cluster\hierarchy.py in fclusterdata(X, t, criterion, metric, depth, method, R)
1682 'array.')
1683
-> 1684 Y = distance.pdist(X, metric=metric)
1685 Z = linkage(Y, method=method)
1686 if R is None:
C:\Anaconda3\lib\site-packages\scipy\spatial\distance.py in pdist(X, metric, p, w, V, VI)
1218
1219 m, n = s
-> 1220 dm = np.zeros((m * (m - 1)) // 2, dtype=np.double)
1221
1222 wmink_names = ['wminkowski', 'wmi', 'wm', 'wpnorm']
MemoryError:
So I am guessing my vector is too large. I am a bit surprised, since my distance function is trivial. What is max size vector that fclusterdata
can accept?
Upvotes: 3
Views: 2155
Reputation: 77454
Hierarchical clustering usually requires a pairwise distance matrix.
That means you need O(n^2) memory. And it does not 'see' that your distance is constant (and it doesn't make sense to optimize for this either).
It's not a very scalable algorithm.
Upvotes: 3