Hakki
Hakki

Reputation: 1472

mapping values between data frames R

let's create example data:

df <- data.frame(date=c("2017-01-01","2017-01-02", "2017-01-03", "2017-01-04", "2017-01-05"), X1=c("A", "B", "C", "D", "F"),
                 X2=c("B", "A", "D", "F", "C"))
df2 <- data.frame(date=c("2017-01-01","2017-01-02", "2017-01-03", "2017-01-04", "2017-01-05"), 
                  A=c("3", "4", "2", "1", "5"),
                  B=c("6", "2", "5", "1", "1"),
                  C=c("1", "4", "5", "2", "3"),
                  D=c("67", "67", "63", "61", "62"),
                  F=c("31", "33", "35", "31", "38"))

So I have two data frames and I want to match values from df2 to df by date and X1 and X2 and create new variables for those. What makes this tricky for me is that matched values in df2 are in colnames. End result should look like this:

> result
        date X1 X2 Var1 Var2
1 2017-01-01  A  B    3    6
2 2017-01-02  B  A    2    4
3 2017-01-03  C  D    5   63
4 2017-01-04  D  F   61   31
5 2017-01-05  F  C   38    3

result <- data.frame(date=c("2017-01-01","2017-01-02", "2017-01-03", "2017-01-04", "2017-01-05"), 
                     X1=c("A", "B", "C", "D", "F"),
                     X2=c("B", "A", "D", "F", "C"),
                     Var1=c("3", "2", "5", "61", "38"),
                     Var2=c("6", "4", "63", "31", "3"))

I wanted to use mapvalues, but couldn't figure it out. Second thought was to go long format (melt) with df2 and try then, but failed there as well.

Ok, here is my best try, just feels that there could be more efficient way, if you have to create multiple (>50) new variables to data frame.

df2.long <- melt(df2, id.vars = c("date"))

df$Var1 <- na.omit(merge(df, df2.long, by.x = c("date", "X1"), by.y = c("date", "variable"), all.x = FALSE, all.y = TRUE))[,4]
df$Var2 <- na.omit(merge(df, df2.long, by.x = c("date", "X2"), by.y = c("date", "variable"), all.x = FALSE, all.y = TRUE))[,5]

Upvotes: 6

Views: 8422

Answers (5)

GGamba
GGamba

Reputation: 13680

Using dplyr and tidyr:

df2_m <- group_by(df2, date) %>% 
    gather('X1', 'var', -date)

left_join(df, df2_m) %>% 
    left_join(df2_m, by = c('date', 'X2' = 'X1')) %>%
    rename(Var1 = var.x, Var2 = var.y) -> result

Upvotes: 4

Cath
Cath

Reputation: 24074

A possibility with mapply:

df$Var1 <- mapply(function(day, col) df2[df2$date==day, as.character(col)], 
                  day=df$date, col=df$X1)
df$Var2 <- mapply(function(day, col) df2[df2$date==day, as.character(col)], 
                  day=df$date, col=df$X2)

df
#        date X1 X2 Var1 Var2
#1 2017-01-01  A  B    3    6
#2 2017-01-02  B  A    2    4
#3 2017-01-03  C  D    5   63
#4 2017-01-04  D  F   61   31
#5 2017-01-05  F  C   38    3

NB:
If you have more columns to modify (not just 2 like in your example), you can use lapply to loop over the columns X.:

df[, paste0("Var", 1:2)] <- lapply(df[,paste0("X", 1:2)], 
                                   function(value) {
                                      mapply(function(day, col) df2[df2$date==day, as.character(col)], 
                                             day=df$date, col=value)})

Upvotes: 3

user3640617
user3640617

Reputation: 1576

Using melt and match:

df2l<-melt(df2, measure=c("A","B","C","D","F"))
Indices <- match(paste(df$date, df$X1), paste(df2l$date,df2l$variable))
df$Var1 <- df2l$value[Indices]
Indices2 <- match(paste(df$date, df$X2), paste(df2l$date,df2l$variable))
df$Var2 <- df2l$value[Indices2]

Upvotes: 1

David Arenburg
David Arenburg

Reputation: 92282

An double melt > join > dcast option using data.table

library(data.table) # v>=1.10.0
dcast(
  melt(setDT(df), 1L)[ # melt the first table by date
    melt(setDT(df2), 1L),  # melt the second table by date
    on = .(date, value = variable), # join by date and the letters
    nomatch = 0L], # remove everything that wasn't matched
  date ~ variable, # convert back to long format
  value.var = c("value", "i.value")) # take both values columns

#          date value_X1 value_X2 i.value_X1 i.value_X2
# 1: 2017-01-01        A        B          3          6
# 2: 2017-01-02        B        A          2          4
# 3: 2017-01-03        C        D          5         63
# 4: 2017-01-04        D        F         61         31
# 5: 2017-01-05        F        C         38          3

Upvotes: 3

akrun
akrun

Reputation: 887028

We can use match to get the column index of 'df2' from the 'X1' and 'X2' columns, cbind with the sequence of rows, use the row/column index to extract the values in 'df2', and assign the output to create the 'Var' columns

df[paste0("Var", 1:2)] <-  lapply(df[2:3], function(x)
          df2[-1][cbind(1:nrow(df2), match(x, names(df2)[-1]))])
df
#        date X1 X2 Var1 Var2
#1 2017-01-01  A  B    3    6
#2 2017-01-02  B  A    2    4
#3 2017-01-03  C  D    5   63
#4 2017-01-04  D  F   61   31
#5 2017-01-05  F  C   38    3

Upvotes: 2

Related Questions