Reputation: 255
I have the following data
timestamp bucket forward
0 02/01/2012 08:00 1 2309.6
1156 02/01/2012 08:00 2 2305.9
2320 02/01/2012 08:00 3 2306
3481 02/01/2012 08:00 4 2240.9
4643 02/01/2012 08:00 5 2235.3
5807 02/01/2012 08:00 6 2224.1
6969 02/01/2012 08:00 7 2167.1
1 02/01/2012 09:00 1 2327.3
1157 02/01/2012 09:00 2 2323.4
2321 02/01/2012 09:00 3 2323.5
3482 02/01/2012 09:00 4 2258.4
4644 02/01/2012 09:00 5 2252.8
5808 02/01/2012 09:00 6 2241.4
6970 02/01/2012 09:00 7 2183.2
2 02/01/2012 10:00 1 2342.3
If bucket > previou bucket, I need to find the corresponding forward with the same timestamp, ie:
timestamp bucket forward result
0 02/01/2012 08:00 1 2309.6 2309.6
1156 02/01/2012 08:00 2 2305.9 2309.6
2320 02/01/2012 08:00 3 2306 2309.6
3481 02/01/2012 08:00 4 2240.9 2309.6
4643 02/01/2012 08:00 5 2235.3 2309.6
5807 02/01/2012 08:00 6 2224.1 2309.6
6969 02/01/2012 08:00 7 2167.1 2309.6
1 02/01/2012 09:00 1 2327.3 2327.3
1157 02/01/2012 09:00 2 2323.4 2327.3
2321 02/01/2012 09:00 3 2323.5 2327.3
3482 02/01/2012 09:00 4 2258.4 2327.3
4644 02/01/2012 09:00 5 2252.8 2327.3
5808 02/01/2012 09:00 6 2241.4 2327.3
6970 02/01/2012 09:00 7 2183.2 2327.3
2 02/01/2012 10:00 1 2342.3 2342.3
so far I have:
df['result'] = np.where(df['bucket'].diff()>0, df['forward'].shift(1), df['forward'])
not sure how to incorporate the first occurance in bucket part. any pointer would be appreciated
Upvotes: 2
Views: 1344
Reputation: 76977
Here's one way.
Fill values by comparing with previous value, and then ffill
the NaN
values.
In [1024]: df['result'] = df.loc[~(df.bucket > df.bucket.shift(1)), 'forward']
In [1025]: df
Out[1025]:
timestamp bucket forward result
0 '02/01/2012 08:00' 1 2309.6 2309.6
1156 '02/01/2012 08:00' 2 2305.9 NaN
2320 '02/01/2012 08:00' 3 2306.0 NaN
3481 '02/01/2012 08:00' 4 2240.9 NaN
4643 '02/01/2012 08:00' 5 2235.3 NaN
5807 '02/01/2012 08:00' 6 2224.1 NaN
6969 '02/01/2012 08:00' 7 2167.1 NaN
1 '02/01/2012 09:00' 1 2327.3 2327.3
1157 '02/01/2012 09:00' 2 2323.4 NaN
2321 '02/01/2012 09:00' 3 2323.5 NaN
3482 '02/01/2012 09:00' 4 2258.4 NaN
4644 '02/01/2012 09:00' 5 2252.8 NaN
5808 '02/01/2012 09:00' 6 2241.4 NaN
6970 '02/01/2012 09:00' 7 2183.2 NaN
2 '02/01/2012 10:00' 1 2342.3 2342.3
Forward-fill NaN
s
In [1026]: df.result = df.result.ffill()
In [1027]: df
Out[1027]:
timestamp bucket forward result
0 '02/01/2012 08:00' 1 2309.6 2309.6
1156 '02/01/2012 08:00' 2 2305.9 2309.6
2320 '02/01/2012 08:00' 3 2306.0 2309.6
3481 '02/01/2012 08:00' 4 2240.9 2309.6
4643 '02/01/2012 08:00' 5 2235.3 2309.6
5807 '02/01/2012 08:00' 6 2224.1 2309.6
6969 '02/01/2012 08:00' 7 2167.1 2309.6
1 '02/01/2012 09:00' 1 2327.3 2327.3
1157 '02/01/2012 09:00' 2 2323.4 2327.3
2321 '02/01/2012 09:00' 3 2323.5 2327.3
3482 '02/01/2012 09:00' 4 2258.4 2327.3
4644 '02/01/2012 09:00' 5 2252.8 2327.3
5808 '02/01/2012 09:00' 6 2241.4 2327.3
6970 '02/01/2012 09:00' 7 2183.2 2327.3
2 '02/01/2012 10:00' 1 2342.3 2342.3
Upvotes: 2
Reputation: 215067
You can create a group variable from bucket column with diff
and cumsum
and then take the first forward value from each group with transform:
df['result'] = df.groupby(by = (df.bucket.diff() < 0).cumsum())['forward'].transform('first')
df
Upvotes: 2