Reputation: 527
>>> c= array([[[1, 2],
[3, 4]],
[[2, 1],
[4, 3]],
[[3, 2],
[1, 4]]])
>>> x
array([[0, 1, 2],
[3, 4, 5]])
return me a matrix such that each column is the product of each matrix in c multiply the each corresponding column of x in regular matrix multiplication. I'm trying to figure out a way to vectorized it or at least not using for loop to solve it.
array([[6, 6, 16]
12, 16, 22]])
to extends this operation further let's say that I have an array of matrices,say
>>> c
array([[[1, 2],
[3, 4]],
[[2, 1],
[4, 3]],
[[3, 2],
[1, 4]]])
>>> x
array([[[1, 2, 3],
[1, 2, 3]],
[[1, 0, 2],
[1, 0, 2]],
[[2, 3, 1],
[0, 1, 0]]])
def fun(c,x):
for i in range(len(x)):
np.einsum('ijk,ki->ji',c,x[i])
##something
So basically, I want to have each matrix in x multiply with all of c. return a structure similar to c without introducing this for loop
The reason I'm doing this because I've encounter a problem to solve a problem ,trying to vectorized
Xc (the operation follows the normal matrix column vector multiplication), c is 3D array; like the c from above-- a column vector that each element is a matrix (in numpy its the form in the above). X is the matrix with each elements is a 1D array. The output of the Xc should be 1D array.
Upvotes: 2
Views: 88
Reputation: 221614
You can use np.einsum
-
np.einsum('ijk,ki->ji',c,x)
Sample run -
In [155]: c
Out[155]:
array([[[1, 2],
[3, 4]],
[[2, 1],
[4, 3]],
[[3, 2],
[1, 4]]])
In [156]: x
Out[156]:
array([[0, 1, 2],
[3, 4, 5]])
In [157]: np.einsum('ijk,ki->ji',c,x)
Out[157]:
array([[ 6, 6, 16],
[12, 16, 22]])
For the 3D case of x
, simply append the new dimension at the start of the string notation for x
and correspondingly at the output string notation too, like so -
np.einsum('ijk,lki->lji',c,x)
Sample run -
In [151]: c
Out[151]:
array([[[1, 2],
[3, 4]],
[[2, 1],
[4, 3]],
[[3, 2],
[1, 4]]])
In [152]: x
Out[152]:
array([[[1, 2, 3],
[1, 2, 3]],
[[1, 0, 2],
[1, 0, 2]],
[[2, 3, 1],
[0, 1, 0]]])
In [153]: np.einsum('ijk,lki->lji',c,x)
Out[153]:
array([[[ 3, 6, 15],
[ 7, 14, 15]],
[[ 3, 0, 10],
[ 7, 0, 10]],
[[ 2, 7, 3],
[ 6, 15, 1]]])
Upvotes: 1