Reputation: 5450
I am getting two different results for some inputs but not others. Let me explain using the concrete example. I have the following function:
In [86]: def f(x, p):
...: n = len(p)
...: tot = 0
...: for i in range(n):
...: tot += p[i] * x**(n-i-1)
...: return tot
p
is an array with very small values:
In [87]: p
Out[87]:
array([ -3.93107522e-45, 9.17048746e-40, -8.11593366e-35,
3.05584286e-30, -1.06065846e-26, -3.03946945e-21,
1.05944707e-16, -1.56986924e-12, 1.07293061e-08,
-3.22670121e-05, 1.12072912e-01])
Now consider the outputs:
In [90]: [f(i, p) for i in range(11, 20)]
Out[90]:
[0.11171927108787173,
0.1116872502272328,
0.1116552507123586,
0.11162327253386167,
0.11159131568235707,
0.11155938014846242,
0.1115274659227979,
0.11149557299598616,
0.11146370135865244]
In [88]: [f(i, p) for i in np.array(range(11, 20))]
Out[88]:
[0.11171927108787173,
0.1116872502272328,
0.1116552507123586,
0.11162327253386167,
0.11159131568235707,
0.11155938014846242,
0.1115274659227979,
0.11149557299598616,
0.11146370135865244]
As you can see, these outputs are exactly same as they should be. The only difference is that in one case I am using range(a, b)
while in the other case I am converting that range to a numpy array.
But now, let us change the values inside the range:
In [91]: [f(i, p) for i in range(50001, 50010)]
Out[91]:
[-0.011943965521167818,
-0.011967640114171604,
-0.011991315947644229,
-0.012014993019120554,
-0.012038671327427961,
-0.012062350870605351,
-0.012086031644648818,
-0.012109713648648865,
-0.012133396879791744]
In [92]: [f(i, p) for i in np.array(range(50001, 50010))]
Out[92]:
[491.26519430165808,
491.32457916465478,
491.38395932037008,
491.38726606180143,
491.44663641006275,
491.50600185375316,
491.56536239249812,
491.56864971072332,
491.6280006336612]
And they are not even close! Am I missing something ridiculously simple?
Upvotes: 0
Views: 61
Reputation: 49794
The values in f(x, p)
for x
in the error case, are type numpy.int32
. They can overflow. The fix in this case is relatively straight forward, convert the values to int
:
tot += p[i] * np.asarray(x).astype(int) ** (n - i - 1)
Upvotes: 1
Reputation: 280607
You're missing the fact that ordinary Python integers are arbitrary-precision, while NumPy integers are fixed-size.
This:
x**(n-i-1)
overflows with the NumPy inputs.
Upvotes: 2