Reputation: 1329
Supposing I have a set involving three conjunctions {k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2}
.
How can I prove in Isabelle that the cardinality of this set is 1 ? (Namely only k=6 has gcd 3 6 = 2.) I.e., how can I prove lemma a_set : "card {k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2} = 1"
?
Using sledgehammer
(or try
) again doesn't yield results - I find it very difficult to find what exactly I need to give the proof methods to make them able to to the proof. (Even removing, e.g. gcd 3 k = 2
, doesn't make it amenable to auto
or sledgehammer
.)
Upvotes: 0
Views: 240
Reputation: 8278
Your proposition is incorrect. The set you described is actually empty, as gcd 3 6 = 3
. Sledgehammer can prove that the cardinality is zero without problems, although the resulting proof is again a bit ugly, as is often the case with Sledgehammer proofs:
lemma "card {k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2} = 0"
by (metis (mono_tags, lifting) card.empty coprime_Suc_nat
empty_Collect_eq eval_nat_numeral(3) gcd_nat.left_idem
numeral_One numeral_eq_iff semiring_norm(85))
Let's do it by hand, just to illustrate how to do it. These sorts of proofs do tend to get a little ugly, especially when you don't know the system well.
lemma "{k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2} = {}"
proof safe
fix x :: nat
assume "x > 2" "x ≤ 7" "gcd 3 x = 2"
from ‹x > 2› and ‹x ≤ 7› have "x = 3 ∨ x = 4 ∨ x = 5 ∨ x = 6 ∨ x = 7" by auto
with ‹gcd 3 x = 2› show "x ∈ {}" by (auto simp: gcd_non_0_nat)
qed
Another, much simpler way (but also perhaps more dubious one) would be to use eval
. This uses the code generator as an oracle, i.e. it compiles the expression to ML code, compiles it, runs it, looks if the result is True
, and then accepts this as a theorem without going through the Isabelle kernel like for normal proofs. One should think twice before using this, in my opinion, but for toy examples, it is perfectly all right:
lemma "card {k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2} = 0"
proof -
have "{k::nat. 2<k ∧ k ≤ 7 ∧ gcd 3 k = 2} = Set.filter (λk. gcd 3 k = 2) {2<..7}"
by (simp add: Set.filter_def)
also have "card … = 0" by eval
finally show ?thesis .
qed
Note that I had to massage the set a bit first (use Set.filter
instead of the set comprehension) in order for eval
to accept it. (Code generation can be a bit tricky)
UPDATE:
For the other statement from the comments, the proof has to look like this:
lemma "{k::nat. 0<k ∧ k ≤ 5 ∧ gcd 5 k = 1} = {1,2,3,4}"
proof (intro equalityI subsetI)
fix x :: nat
assume x: "x ∈ {k. 0 < k ∧ k ≤ 5 ∧ coprime 5 k}"
from x have "x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4 ∨ x = 5" by auto
with x show "x ∈ {1,2,3,4}" by (auto simp: gcd_non_0_nat)
qed (auto simp: gcd_non_0_nat)
The reason why this looks so different is because the right-hand side of the goal is no longer simply {}
, so safe
behaves differently and generates a pretty complicated mess of subgoals (just look at the proof state after the proof safe
). With intro equalityI subsetI
, we essentially just say that we want to prove that A = B
by proving a ∈ A ⟹ a ∈ B
and the other way round for arbitrary a
. This is probably more robust than safe
.
Upvotes: 2