Reputation: 125
I have created this pandas
table
index p1 p2 p3 p4
0 29.02.2017 10.00-11.00 1 2
1 29.02.2017 10.00-11.00 1 3
2 28.02.2017 08.00-09.00 10 11
3 28.02.2017 08.00-09.00 10 12
4 29.02.2017 08.00-09.00 10 13
5 29.02.2017 08.00-09.00 10 9
6 28.02.2017 08.00-09.00 11 10
7 28.02.2017 08.00-09.00 11 12
8 28.02.2017 10.00-11.00 11 13
values are sorted by p3>p1>p2>p4
what I want to do now, is to append p4, if p1, p2, p3 matches, like e.g.
index p1 p2 p3 p4
0 29.02.2017 10.00-11.00 1 2, 3
2 28.02.2017 08.00-09.00 10 11, 12
4 29.02.2017 08.00-09.00 10 13, 9
6 28.02.2017 08.00-09.00 11 10, 12
8 28.02.2017 10.00-11.00 11 13
and I dont really know what to do. I know how to append more rows, or how to sum up values, but I want to keep them as in e.g.
Upvotes: 2
Views: 497
Reputation: 862851
You need groupby
with apply
and join
, but need convert numeric column to string
first:
df = df.groupby(['p1','p2','p3'], sort=False)['p4']
.apply(lambda x: ', '.join(x.astype(str)))
.reset_index()
print (df)
p1 p2 p3 p4
0 29.02.2017 10.00-11.00 1 2, 3
1 28.02.2017 08.00-09.00 10 11, 12
2 29.02.2017 08.00-09.00 10 13, 9
3 28.02.2017 08.00-09.00 11 10, 12
4 28.02.2017 10.00-11.00 11 13
If need output as list faster is use:
print (df.groupby(['p1','p2','p3']).p4.apply(lambda x: x.tolist()))
Timings:
df = pd.concat([df]*10000).reset_index(drop=True)
In [306]: %timeit (df.groupby(['p1','p2','p3']).p4.apply(list))
10 loops, best of 3: 22.6 ms per loop
In [307]: %timeit (df.groupby(['p1','p2','p3']).p4.apply(lambda x: x.tolist()))
100 loops, best of 3: 18.4 ms per loop
Upvotes: 4
Reputation: 18638
If you want values as list
s,
Here is a solution :
In [39]: df.groupby(['p3','p1','p2']).p4.apply(list)
Out[39]:
p3 p1 p2
1 29.02.2017 10.00-11.00 [2, 3]
10 28.02.2017 08.00-09.00 [11, 12]
29.02.2017 08.00-09.00 [13, 9]
11 28.02.2017 08.00-09.00 [10, 12]
10.00-11.00 [13]
Upvotes: 2