Reputation: 323
There are a number of questions here about repeating rows a prespecified number of times in R, but I can't find one to address the specific question I'm asking.
I have a dataframe of responses from a survey in which each respondent answers somewhere between 5 and 10 questions. As a toy example:
df <- data.frame(ID = rep(1:2, each = 5),
Response = sample(LETTERS[1:4], 10, replace = TRUE),
Weight = rep(c(2,3), each = 5))
> df
ID Response Weight
1 1 D 2
2 1 C 2
3 1 D 2
4 1 D 2
5 1 B 2
6 2 D 3
7 2 C 3
8 2 B 3
9 2 D 3
10 2 B 3
I would like to repeat respondent 1's answers twice, as a block, and then respondent 2's answers 3 times, as a block, and I want each block of responses to have a unique ID. In other words, I want the end result to look like this:
ID Response Weight
1 11 D 2
2 11 C 2
3 11 D 2
4 11 D 2
5 11 B 2
6 12 D 2
7 12 C 2
8 12 D 2
9 12 D 2
10 12 B 2
11 21 D 3
12 21 C 3
13 21 B 3
14 21 D 3
15 21 B 3
16 22 D 3
17 22 C 3
18 22 B 3
19 22 D 3
20 22 B 3
21 23 D 3
22 23 C 3
23 23 B 3
24 23 D 3
25 23 B 3
The way I'm doing this is currently really clunky, and, given that I have >3000 respondents in my dataset, is unbearably slow.
Here's my code:
df.expanded <- NULL
for(i in unique(df$ID)) {
x <- df[df$ID == i,]
y <- x[rep(seq_len(nrow(x)), x$Weight),1:3]
y$order <- rep(1:max(x$Weight), nrow(x))
y <- y[with(y, order(order)),]
y$IDNew <- rep(max(y$ID)*100 + 1:max(x$Weight), each = nrow(x))
df.expanded <- rbind(df.expanded, y)
}
Is there a faster way to do this?
Upvotes: 1
Views: 1366
Reputation: 193687
Another approach would be to use data.table
.
Assuming you're starting with "DT" as your data.table
, try:
library(data.table)
DT[, list(.id = rep(seq(Weight[1]), each = .N), Weight, Response), .(ID)]
I haven't pasted the ID columns together, but instead, created a secondary column. That seems a little bit more flexible to me.
Data for testing. Change n
to create a larger dataset to play with.
set.seed(1)
n <- 5
weights <- sample(3:15, n, TRUE)
df <- data.frame(ID = rep(seq_along(weights), weights),
Response = sample(LETTERS[1:5], sum(weights), TRUE),
Weight = rep(weights, weights))
DT <- as.data.table(df)
Upvotes: 1
Reputation: 17299
There is an easier solution. I suppose you want to duplicate rows based on Weight
as shown in your code.
df2 <- df[rep(seq_along(df$Weight), df$Weight), ]
df2$ID <- paste(df2$ID, unlist(lapply(df$Weight, seq_len)), sep = '')
# sort the rows
df2 <- df2[order(df2$ID), ]
Is this method faster? Let's see:
library(microbenchmark)
microbenchmark(
m1 = {
df.expanded <- NULL
for(i in unique(df$ID)) {
x <- df[df$ID == i,]
y <- x[rep(seq_len(nrow(x)), x$Weight),1:3]
y$order <- rep(1:max(x$Weight), nrow(x))
y <- y[with(y, order(order)),]
y$IDNew <- rep(max(y$ID)*100 + 1:max(x$Weight), each = nrow(x))
df.expanded <- rbind(df.expanded, y)
}
},
m2 = {
df2 <- df[rep(seq_along(df$Weight), df$Weight), ]
df2$ID <- paste(df2$ID, unlist(lapply(df$Weight, seq_len)), sep = '')
# sort the rows
df2 <- df2[order(df2$ID), ]
}
)
# Unit: microseconds
# expr min lq mean median uq max neval
# m1 806.295 862.460 1101.6672 921.0690 1283.387 2588.730 100
# m2 171.731 194.199 245.7246 214.3725 283.145 506.184 100
There might be other more efficient ways.
Upvotes: 1