Reputation: 2299
I am trying to concat two dataframes:
df2:
CU Pmt 2017-02-01
h b 15
h d 12
h a 13
and df1:
CU Pmt 'Total/Max/Min'
h b 20
h d 23
h a 22
a b 16
a d 13
a a 14
such that df3:
CU Pmt 2017-02-01 2017-02-02
h b 15 20
h d 12 23
h a 13 22
a b NaN 16
a d NaN 13
a a Nan 14
I am using a multi index of index_col = [0,1] for both
This is what I have:
date = '2017-02-02'
df1 = pd.read_csv(r'Data\2017-02\2017-02-02\Aggregated\Aggregated_Daily_All.csv', usecols=['CU', 'Parameters', 'Total/Max/Min'], index_col =[0,1])
df1 = df1.rename(columns = {'Total/Max/Min':date})
df2 = pd.read_csv(r'Data\2017-02\MonthlyData\February2017.csv', index_col = [0,1])
df3 = pd.concat([df2, df1], axis=1)
df3.to_csv(r'Data\2017-02\MonthlyData\February2017.csv')
However, df3 is coming out as:
CU Pmt 2017-02-01 2017-02-02
a a NaN 14
a b NaN 16
a d Nan 13
h a 13 22
h b 15 20
h d 12 23
Which has CU
and Pmt
(the two index columns) in alphabetical order. How is it possible to keep the original order, so that for all new indexes added for a new date, they are added at the bottom?
Upvotes: 3
Views: 15489