Reputation: 1071
My dask dataframe has about 120 mm rows and 4 columns:
df_final.dtypes
cust_id int64
score float64
total_qty float64
update_score float64
dtype: object
and I'm doing this operation on jupyter notebooks connected to linux machine :
%time df_final.to_csv('/path/claritin-files-*.csv')
and it throws up this error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-24-46468ae45023> in <module>()
----> 1 get_ipython().magic(u"time df_final.to_csv('path/claritin-files-*.csv')")
/home/mspra/anaconda2/lib/python2.7/site-packages/IPython/core/interactiveshell.pyc in magic(self, arg_s)
2334 magic_name, _, magic_arg_s = arg_s.partition(' ')
2335 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
-> 2336 return self.run_line_magic(magic_name, magic_arg_s)
2337
2338 #-------------------------------------------------------------------------
/home/mspra/anaconda2/lib/python2.7/site-packages/IPython/core/interactiveshell.pyc in run_line_magic(self, magic_name, line)
2255 kwargs['local_ns'] = sys._getframe(stack_depth).f_locals
2256 with self.builtin_trap:
-> 2257 result = fn(*args,**kwargs)
2258 return result
2259
/home/mspra/anaconda2/lib/python2.7/site-packages/IPython/core/magics/execution.pyc in time(self, line, cell, local_ns)
/home/mspra/anaconda2/lib/python2.7/site-packages/IPython/core/magic.pyc in <lambda>(f, *a, **k)
191 **# but it's overkill for just that one bit of state.**
192 def magic_deco(arg):
--> 193 call = lambda f, *a, **k: f(*a, **k)
194
195 if callable(arg):
/home/mspra/anaconda2/lib/python2.7/site-packages/IPython/core/magics/execution.pyc in time(self, line, cell, local_ns)
1161 if mode=='eval':
1162 st = clock2()
-> 1163 out = eval(code, glob, local_ns)
1164 end = clock2()
1165 else:
<timed eval> in <module>()
/home/mspra/anaconda2/lib/python2.7/site-packages/dask/dataframe/core.pyc in to_csv(self, filename, **kwargs)
936 """ See dd.to_csv docstring for more information """
937 from .io import to_csv
--> 938 return to_csv(self, filename, **kwargs)
939
940 def to_delayed(self):
/home/mspra/anaconda2/lib/python2.7/site-packages/dask/dataframe/io/csv.pyc in to_csv(df, filename, name_function, compression, compute, get, **kwargs)
411 if compute:
412 from dask import compute
--> 413 compute(*values, get=get)
414 else:
415 return values
/home/mspra/anaconda2/lib/python2.7/site-packages/dask/base.pyc in compute(*args, **kwargs)
177 dsk = merge(var.dask for var in variables)
178 keys = [var._keys() for var in variables]
--> 179 results = get(dsk, keys, **kwargs)
180
181 results_iter = iter(results)
/home/mspra/anaconda2/lib/python2.7/site-packages/dask/threaded.pyc in get(dsk, result, cache, num_workers, **kwargs)
74 results = get_async(pool.apply_async, len(pool._pool), dsk, result,
75 cache=cache, get_id=_thread_get_id,
---> 76 **kwargs)
77
78 # Cleanup pools associated to dead threads
/home/mspra/anaconda2/lib/python2.7/site-packages/dask/async.pyc in get_async(apply_async, num_workers, dsk, result, cache, get_id, raise_on_exception, rerun_exceptions_locally, callbacks, dumps, loads, **kwargs)
491 _execute_task(task, data) # Re-execute locally
492 else:
--> 493 raise(remote_exception(res, tb))
494 state['cache'][key] = res
495 finish_task(dsk, key, state, results, keyorder.get)
**ValueError: invalid literal for long() with base 10: 'total_qty'**
Traceback
---------
File "/home/mspra/anaconda2/lib/python2.7/site-packages/dask/async.py", line 268, in execute_task
result = _execute_task(task, data)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/dask/async.py", line 249, in _execute_task
return func(*args2)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/dask/dataframe/io/csv.py", line 55, in pandas_read_text
coerce_dtypes(df, dtypes)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/dask/dataframe/io/csv.py", line 83, in coerce_dtypes
df[c] = df[c].astype(dtypes[c])
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/core/generic.py", line 3054, in astype
raise_on_error=raise_on_error, **kwargs)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 3189, in astype
return self.apply('astype', dtype=dtype, **kwargs)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 3056, in apply
applied = getattr(b, f)(**kwargs)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 461, in astype
values=values, **kwargs)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/core/internals.py", line 504, in _astype
values = _astype_nansafe(values.ravel(), dtype, copy=True)
File "/home/mspra/anaconda2/lib/python2.7/site-packages/pandas/types/cast.py", line 534, in _astype_nansafe
return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)
File "pandas/lib.pyx", line 980, in pandas.lib.astype_intsafe (pandas/lib.c:17409)
File "pandas/src/util.pxd", line 93, in util.set_value_at_unsafe (pandas/lib.c:72777)
I have a couple of questions:
1) First of all this export was working fine on Friday, it spit out 100 csv files ( since it has 100 partitions), which I later aggregated. So what is wrong today -- anything from the error log?
2) May be this question is for the creators of this package, what is the most time-efficient way to get a csv extract out of a dask dataframe of this size, since it was taking about 1.5 to 2 hrs, the last time it was working.
I'm not using dask distributed and this is on single core of a linux cluster.
Upvotes: 1
Views: 2737
Reputation: 57251
This error likely has little to do with to_csv
and more to do with something else in your computation. The call to df.to_csv
was just the first time you forced the computation to roll through all of the data.
Given the error I actually suspect that this is failing in read_csv
. Dask.dataframe read the first few hundred kilobytes of your first file to guess at the datatypes, but it seems to have guessed incorrectly. You might want to try specifying dtypes explicitly in the read_csv call.
In regards to the second question about writing to CSV quickly, my first answer would be "use Parquet or HDF5 instead". They're much faster and more accurate in almost every respect.
Upvotes: 1