Reputation: 221
Thanks again for taking the time to read this post.
I know this question has been asked a lot , and i have checked many posts about this issue : however, my quest for a sucessfull XOR learning using backpropagation remain unfinished.
I tried, like suggested, tweaking the learning rate, the momentum , with/out biases, etc, still no success.
Network consist of 2 input neuron, 2 hidden neurons, 1 output, all Sigmoids. The output neuron seems to always converge around 0.5 for every inputs.
I am therefore requesting your precious skills for that matter. I am using a self-made C++ library (so i can learn in deep how the basics work).
Here are lines-of-interest of my code :
Get error derivative from output neuron
void ClOutputSigmoidNeuron::ComputeErrorGradient()
{
double wanted_output = this->m_dataset->GetNextData();
double delta = wanted_output - this->m_result_buffer;
this->m_error_gradient = delta * this->SigmoidDerivative(this->m_result_buffer);
}
Get error derivative from hidden neuron
void ClSigmoidNeuron::ComputeErrorGradient()
{
double tmpBuffer = 0.00;
for(std::size_t i=0;i<this->m_output_connections.size();i++)
{
ClNeuron* target_neuron = (ClNeuron*)m_output_connections[i]->m_target_neuron;
tmpBuffer += (target_neuron->m_error_gradient * this->m_output_connections[i]->m_weight);
}
//Get the sigmoid derivative
this->m_error_gradient = tmpBuffer * this->SigmoidDerivative(this->m_result_buffer);
}
Weights update for a general neuron :
void ClNeuron::UpdateWeights()
{
for(std::size_t i=0;i<this->m_input_connections.size();i++)
{
double momentum = this->m_input_connections[i]->m_weight_last_delta * this->m_input_connections[i]->m_momentum_value;
double new_weight_delta = this->m_learning_rate * this->m_error_gradient * this->m_input_connections[i]->m_data + momentum ;
this->m_input_connections[i]->m_weight += new_weight_delta;
this->m_input_connections[i]->m_weight_last_delta = new_weight_delta;
this->m_input_connections[i]->m_number_of_time_updated++;
}
}
Transfer functions
double ClNeuron::Sigmoid(double p_value)
{
return 1.00 / (1.00 + std::exp(p_value*-1.00));
}
double ClNeuron::SigmoidDerivative(double p_value)
{
double sigmoid = this->Sigmoid(p_value);
return sigmoid * (1.00 - sigmoid);
}
The function used to training
bool ClBackPropagationSupervisedTrainer::Train()
{
for (std::size_t i = 0; i < this->m_dataset_size; i++)
{
this->m_network->Fire();
if (!this->m_network->ComputeErrorGradients())
{
std::cout << "ClBackPropagationSupervisedTrainer:Train - Oups" << std::endl;
return false;
}
this->m_network->UpdateWeights();
}
return true;
}
Again, thanks for reading this, i know this question has been asked a lot ! Pointing me in the right direction would be greatly appreciated.
Upvotes: 2
Views: 489
Reputation: 221
Interestingly enough, in case it can help someone, changing from a Sigmoid() network to a TanH() network solved the issue.
In some way it does make sense, and yet, a Sigmoid transfert function seems perfect for this kind of problem, since XOR is already normalized between 0 & 1...
Upvotes: 1