Reputation: 180
I want to use a mixed model without a random intercept but with a correlation structure. The reason is to get the AIC to help choose the best correlation structure (e.g., autoregressive versus compound symmetry). So it is essentially a GEE, but GEEs don't allow estimation of the AIC. They are also called covariance pattern models.
The code below simulates random data with a compound symmetry correlation. The model fits both a random intercept and a variance-covariance matrix. Is there any way to switch off the random intercept?
library(MASS)
library(nlme)
Sigma = toeplitz(c(1,0.5,0.5,0.5))
data = data.frame(mvrnorm(n=10, mu=1:4, Sigma=Sigma))
data$id = 1:nrow(data)
long = reshape(data, direction='long', varying=list(1:4), v.names='Y')
cs = corCompSymm(0.5, form = ~ 1 | id)
model = lme(Y~time , random=list(~1|id), data=long, correlation=cs)
summary(model)
Upvotes: 1
Views: 781
Reputation: 186
If you are solely interested in comparing correlation structures, then I am pretty sure your goal could be served by a generalized least squares model fit with gls
:
model = gls(Y~time, data=long, correlation=cs)
summary(model)
AIC(model)
Otherwise, a linear mixed effects model fit with lme
must have random effects specified.
Upvotes: 1