Reputation: 93
I want to create my own datasets, and use it in scikit-learn. Scikit-learn has some datasets like 'The Boston Housing Dataset' (.csv), user can use it by:
from sklearn import datasets
boston = datasets.load_boston()
and codes below can get the data
and target
of this dataset:
X = boston.data
y = boston.target
The question is how to create my own dataset and can be used in that way? Any answers is appreciated, Thanks!
Upvotes: 8
Views: 11470
Reputation: 13723
Here's a quick and dirty way to achieve what you intend:
my_datasets.py
import numpy as np
import csv
from sklearn.utils import Bunch
def load_my_fancy_dataset():
with open(r'my_fancy_dataset.csv') as csv_file:
data_reader = csv.reader(csv_file)
feature_names = next(data_reader)[:-1]
data = []
target = []
for row in data_reader:
features = row[:-1]
label = row[-1]
data.append([float(num) for num in features])
target.append(int(label))
data = np.array(data)
target = np.array(target)
return Bunch(data=data, target=target, feature_names=feature_names)
my_fancy_dataset.csv
feature_1,feature_2,feature_3,class_label
5.9,1203,0.69,2
7.2,902,0.52,0
6.3,143,0.44,1
-2.6,291,0.15,1
1.8,486,0.37,0
In [12]: import my_datasets
In [13]: mfd = my_datasets.load_my_fancy_dataset()
In [14]: X = mfd.data
In [15]: y = mfd.target
In [16]: X
Out[16]:
array([[ 5.900e+00, 1.203e+03, 6.900e-01],
[ 7.200e+00, 9.020e+02, 5.200e-01],
[ 6.300e+00, 1.430e+02, 4.400e-01],
[-2.600e+00, 2.910e+02, 1.500e-01],
[ 1.800e+00, 4.860e+02, 3.700e-01]])
In [17]: y
Out[17]: array([2, 0, 1, 1, 0])
In [18]: mfd.feature_names
Out[18]: ['feature_1', 'feature_2', 'feature_3']
Upvotes: 5
Reputation:
Assuming you have your data loaded into memory as a 2D array, there is an easy way to do this with OneHotEncoder:
from sklearn import svm
from sklearn.preprocessing import OneHotEncoder
data = [['Male', 1, True], ['Female', 3, True], ['Female', 2, False], ['Male', 2, False]]
y = [0, 1, 1, 1] # expected outputs
enc = OneHotEncoder(drop='if_binary') # create encoder obj that drops unneeded columns on binary inputs
X = enc.fit_transform(data).toarray() # vectorize input data
clf = svm.SVC(gamma=0.001, C=100.) # create classifier obj
clf.fit(X[:-1], y[:-1]) # fit model using training data (all but last entry)
out = clf.predict(X[-1:]) # resulting prediction (last entry only)
Upvotes: 0