Reputation: 359
I have 4 columns of data:
yyyymmdd hh mm ss
20140102 02 20 31
20140102 02 20 32
2014o102 02 20 34
The 3rd row has a non-numeric character and I want to get rid of the entire row (even if there's a character in any of the other columns). I have tried the following:
df['yyyymmdd'] = pd.to_numeric(df['yyyymmdd'], errors='coerce')
df['hh'] = pd.to_numeric(df['hh'], errors='coerce')
df['mm'] = pd.to_numeric(df['mm'], errors='coerce')
df['ss'] = pd.to_numeric(df['ss'], errors='coerce')
df.dropna()
But, it's not working
Upvotes: 1
Views: 54
Reputation: 294328
Do it all at once
pd.to_numeric(df.stack(), 'coerce').unstack().dropna()
yyyymmdd hh mm ss
0 20140102 2 20 31
1 20140102 2 20 32
Upvotes: 1