Reputation: 653
I am trying to implement Gaussian Mixture Model using Tensorflow's tf.learn(skflow) but I am getting the following error.
from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib
import random
import numpy as np
x = np.array([[random.random() for i in range(198)] for j in range(2384)], dtype=np.float32)
gmm = gmm_lib.GMM(128,random_seed=0)
gmm.fit(x)
Error StackTrace :-
InvalidArgumentError (see above for traceback): Input is not invertible.
[[Node: MatrixInverse_2 = MatrixInverse[T=DT_FLOAT, adjoint=false, _device="/job:localhost/replica:0/task:0/cpu:0"](add_138)]]
Upvotes: 2
Views: 1030