Reputation: 33
Below is the format of the database of Autonomous System Numbers ( download and parsed from this site! ).
range_start range_end number cc provider
----------- --------- ------ -- -------------------------------------
16778240 16778495 56203 AU AS56203 - BIGRED-NET-AU Big Red Group
16793600 16809983 18144 AS18144
745465 total rows
A Normal query looks like this:
select * from table where 3232235520 BETWEEN range_start AND range_end
Works properly but I query a huge number of IPs to check for their AS information which ends up taking too many calls and time.
Profiler Snapshot:
I've two indexes:
Questions:
where (IP between range_start and range_end) OR where (IP between range_start and range_end) OR ...
works but I can't get the IP -> row mapping or which rows are retrieved for which IP.Any help will be appreciated! Thanks!
Upvotes: 3
Views: 811
Reputation: 108380
It is possible to query more than one IP address. Several approaches we could take. Assuming range_start
and range_end
are defined as integer types.
For a reasonable number of ip addresses, we could use an inline view:
SELECT i.ip, a.*
FROM ( SELECT 3232235520 AS ip
UNION ALL SELECT 3232235521
UNION ALL SELECT 3232235522
UNION ALL SELECT 3232235523
UNION ALL SELECT 3232235524
UNION ALL SELECT 3232235525
) i
LEFT
JOIN ip_to_asn a
ON a.range_start <= i.ip
AND a.range_end >= i.ip
ORDER BY i.ip
This approach will work for a reasonable number of IP addresses. The inline view could be extended with more UNION ALL SELECT
to add additional IP addresses. But that's not necessarily going to work for a "huge" number.
When we get "huge", we're going to run into limitations in MySQL... maximum size of a SQL statement limited by max_allowed_packet
, there may be a limit on the number of SELECT
that can appear.
The inline view could be replaced with a temporary table, built first.
DROP TEMPORARY TABLE IF EXISTS _ip_list_;
CREATE TEMPORARY TABLE _ip_list_ (ip BIGINT NOT NULL PRIMARY KEY) ENGINE=InnoDB;
INSERT INTO _ip_list_ (ip) VALUES (3232235520),(3232235521),(3232235522),...;
...
INSERT INTO _ip_list_ (ip) VALUES (3232237989),(3232237990);
Then reference the temporary table in place of the inline view:
SELECT i.ip, a.*
FROM _ip_list_ i
LEFT
JOIN ip_to_asn a
ON a.range_start <= i.ip
AND a.range_end >= i.ip
ORDER BY i.ip ;
And then drop the temporary table:
DROP TEMPORARY TABLE IF EXISTS _ip_list_ ;
Some other notes:
Churning database connections is going to degrade performance. There's a significant amount overhead in establishing and tearing down a connection. That overhead get noticeable if the application is repeatedly connecting and disconnecting, if its doing that for every SQL statement being issued.
And running an individual SQL statement also has overhead... the statement has to be sent to the server, the statement parsed for syntax, evaluated from semantics, choose an execution plan, execute the plan, prepare a resultset, return the resultset to the client. And this is why it's more efficient to process set wise rather than row wise. Processing RBAR (row by agonizing row) can be very slow, compared to sending a statement to the database and letting it process a set in one fell swoop.
But there's a tradeoff there. With ginormous sets, things can start to get slow again.
Even if you can process two IP addresses in each statement, that halves the number of statements that need to be executed. If you do 20 IP addresses in each statement, that cuts down the number of statements to 5% of the number that would be required a row at a time.
And the composite index already defined on (range_start,range_end)
is appropriate for this query.
FOLLOWUP
As Rick James points out in a comment, the index I earlier said was "appropriate" is less than ideal.
We could write the query a little differently, that might make more effective use of that index.
If (range_start,range_end)
is UNIQUE (or PRIMARY) KEY, then this will return one row per IP address, even when there are "overlapping" ranges. (The previous query would return all of the rows that had a range_start and range_end that overlapped with the IP address.)
SELECT t.ip, a.*
FROM ( SELECT s.ip
, s.range_start
, MIN(e.range_end) AS range_end
FROM ( SELECT i.ip
, MAX(r.range_start) AS range_start
FROM _ip_list_ i
LEFT
JOIN ip_to_asn r
ON r.range_start <= i.ip
GROUP BY i.ip
) s
LEFT
JOIN ip_to_asn e
ON e.range_start = s.range_start
AND e.range_end >= s.ip
GROUP BY s.ip, s.range_start
) t
LEFT
JOIN ip_to_asn a
ON a.range_start = t.range_start
AND a.range_end = t.range_end
ORDER BY t.ip ;
With this query, for the innermost inline view query s
, the optimizer might be able to make effective use of an index with a leading column of range_start
, to quickly identify the "highest" value of range_start
(that is less than or equal to the IP address). But with that outer join, and with the GROUP BY on i.ip
, I'd really need to look at the EXPLAIN output; it's only conjecture what the optimizer might do; what is important is what the optimizer actually does.)
Then, for inline view query e
, MySQL might be able to make more effective use of the composite index on (range_start,range_end)
, because of the equality predicate on the first column, and the inequality condition on MIN aggregate on the second column.
For the outermost query, MySQL will surely be able to make effective use of the composite index, due to the equality predicates on both columns.
A query of this form might show improved performance, or performance might go to hell in a handbasket. The output of EXPLAIN
should give a good indication of what's going on. We'd like to see "Using index for group-by" in the Extra column, and we only want to see a "Using filesort" for the ORDER BY on the outermost query. (If we remove the ORDER BY clause, we want to not see "Using filesort" in the Extra column.)
Another approach is to make use of correlated subqueries in the SELECT list. The execution of correlated subqueries can get expensive when the resultset contains a large number of rows. But this approach can give satisfactory performance for some use cases.
This query depends on no overlapping ranges in the ip_to_asn
table, and this query will not produce the expected results when overlapping ranges exist.
SELECT t.ip, a.*
FROM ( SELECT i.ip
, ( SELECT MAX(s.range_start)
FROM ip_to_asn s
WHERE s.range_start <= i.ip
) AS range_start
, ( SELECT MIN(e.range_end)
FROM ip_to_asn e
WHERE e.range_end >= i.ip
) AS range_end
FROM _ip_list_ i
) r
LEFT
JOIN ip_to_asn a
ON a.range_start = r.range_start
AND a.range_end = r.range_end
As a demonstration of why overlapping ranges will be a problem for this query, given a totally goofy, made up example
range_start range_end
----------- ---------
.101 .160
.128 .244
Given an IP address of .140
, the MAX(range_start)
subquery will find .128
, the MIN(range_end)
subquery will find .160
, and then the outer query will attempt to find a matching row range_start=.128 AND range_end=.160
. And that row just doesn't exist.
Upvotes: 1
Reputation: 1716
SELECT * FROM TABLE_NAME WHERE (INET_ATON("193.235.19.255") BETWEEN INET_ATON(ipStart) AND INET_ATON(ipEnd));
You will likely want to index your database. This optimizes the time it takes to search your database, similar to the index you will find in the back of a textbook, but for databases:
ALTER TABLE `table` ADD INDEX `name` (`column_id`)
EDIT: Apparently INET_ATON
cannot be used on indexed databases, so you would have to pick one of these!
Upvotes: 0
Reputation: 48357
This is a duplicate of the question here however I'm not voting to close it, as the accepted answer in that question is not very helpful; the answer by Quassnoi is much better (but it only links to the solution).
A linear index is not going to help resolve a database of ranges. The solution is to use geospatial indexing (available in MySQL and other DBMS). An added complication is that MySQL geospatial indexing only works in 2 dimensions (while you have a 1-D dataset) so you need to map this to 2-dimensions.
Hence:
CREATE TABLE IF NOT EXISTS `inetnum` (
`from_ip` int(11) unsigned NOT NULL,
`to_ip` int(11) unsigned NOT NULL,
`netname` varchar(40) default NULL,
`ip_txt` varchar(60) default NULL,
`descr` varchar(60) default NULL,
`country` varchar(2) default NULL,
`rir` enum('APNIC','AFRINIC','ARIN','RIPE','LACNIC') NOT NULL default 'RIPE',
`netrange` linestring NOT NULL,
PRIMARY KEY (`from_ip`,`to_ip`),
SPATIAL KEY `rangelookup` (`netrange`)
) ENGINE=MyISAM DEFAULT CHARSET=ascii;
Which might be populated with....
INSERT INTO inetnum
(from_ip, to_ip
, netname, ip_txt, descr, country
, netrange)
VALUES
(INET_ATON('127.0.0.0'), INET_ATON('127.0.0.2')
, 'localhost','127.0.0.0-127.0.0.2', 'Local Machine', '.',
GEOMFROMWKB(POLYGON(LINESTRING(
POINT(INET_ATON('127.0.0.0'), -1),
POINT(INET_ATON('127.0.0.2'), -1),
POINT(INET_ATON('127.0.0.2'), 1),
POINT(INET_ATON('127.0.0.0'), 1),
POINT(INET_ATON('127.0.0.0'), -1))))
);
Then you might want to create a function to wrap the rather verbose SQL....
DROP FUNCTION `netname2`//
CREATE DEFINER=`root`@`localhost` FUNCTION `netname2`(p_ip VARCHAR(20) CHARACTER SET ascii) RETURNS varchar(80) CHARSET ascii
READS SQL DATA
DETERMINISTIC
BEGIN
DECLARE l_netname varchar(80);
SELECT CONCAT(country, '/',netname)
INTO l_netname
FROM inetnum
WHERE MBRCONTAINS(netrange, GEOMFROMTEXT(CONCAT('POINT(', INET_ATON(p_ip), ' 0)')))
ORDER BY (to_ip-from_ip)
LIMIT 0,1;
RETURN l_netname;
END
And therefore:
SELECT netname2('127.0.0.1');
./localhost
Which uses the index:
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE inetnum range rangelookup rangelookup 34 NULL 1 Using where; Using filesort
(and takes around 10msec to find a record from the combined APNIC,AFRINIC,ARIN,RIPE and LACNIC datasets on the very low spec VM I'm using here)
Upvotes: 0