Reputation: 1875
This is my first ANN so I imagine that there might be a lot of things done wrong here. I don't follow
I'm trying to predict species of flowers from iris
data set provided in R
language but I get following error:
Error in `dimnames<-.data.frame`(`*tmp*`, value = list(n)) :
invalid 'dimnames' given for data frame
My code:
require(mxnet)
train <- iris[1:130,]
test <- iris[131:150,]
train.data <- as.data.frame(train[-5])
train.label <- data.frame(model.matrix(data=train,object =~Species-1))
test.data <- as.data.frame(test[-5])
test.label <- data.frame(model.matrix(data=test,object =~Species-1))
var1 <- mx.symbol.Variable("data")
layer0 <- mx.symbol.FullyConnected(var1, num.hidden=3)
cat.out <- mx.symbol.SoftmaxOutput(layer0)
net.model <- mx.model.FeedForward.create(cat.out,
array.layout = "auto",
X=train.data,
y=train.label,
eval.data = list(data=test.data,label=test.label),
num.round = 20,
array.batch.size = 20,
learning.rate=0.1,
momentum=0.9,
eval.metric = mx.metric.accuracy)
UPDATE:
I managed to get rid of this error by specifying column to use in labels(traning.label[,1]
and test.label[,1]
).
However now I'm training my net to predict just one of my binary variables while I have 3 (one for each species).
Upvotes: 0
Views: 825
Reputation: 1486
I had a similar problem but during the prediction step. It turns out that my features were in a Data Frame which was causing the issue. Once I converted the data frame into a matrix, the issue went away.
pred.values = stats::predict(model,as.matrix(features))
instead of
pred.values = stats::predict(model,features)
So, the features need to be a matrix both during training and during the process of making predictions.
Upvotes: 0
Reputation: 77
I had the same problem, turned out that: train.data should be a matrix train.label should be a numeric vector Check these two and hopefully it should work.
Upvotes: 1