Reputation: 1615
I am struggling with this part of my task at work. I've deliberately not detailed the context of the work task to try and keep the focus on the problem. I have to merge rectangles into a single polygon as shown in the attached image, but I need the list of points so that I can write these out into Polygon shape (DOM object) for a Swing canvas and then SVG export.
I know the origin of each rectangle, i.e. the upper left x and y coordinates (float x, float y) and also the width (float) and height (float) of each rectangle, so from this I can calculate the coordinates of all four corners of each rectangle, i.e. top, right, bottom, left, i.e. top = origin = x, y, right = x + width, bottom = x + width, y + height and left = x, y + height.
I have a List<Rectangle> rectangles
and would like an algorithm which will translate this list into a single polygon (List<Points>
where a point represents the coordinates (x, y) of each point as shown in the diagram marked red "x"s.
I will then use this list of points to write out an element in the DOM for printing a web page eventually in SVG. So, my end result has to be a list of points (i.e. x,y coordinates for constructing a polygon shape in SVG).
I did see this answer which does something similar, but I'm not sure if I can apply this to my case - also it's written in Python and not Java: Merging multiple adjacent rectangles into one polygon
Upvotes: 7
Views: 3638
Reputation: 12346
After looking at a similar problem, I found a significantly faster implementation of the java awt solution.
Path2D path = new Path2D.Double();
path.append(rect1, false);
path.append(rect2, false);
Finally, create an area to get rid of the overlapping lines.
Area a = new Area(path);
For a couple rectangles the https://stackoverflow.com/a/73535402/2067492 is a good solution, this was developed to convert pixels into an area where there can be millions of rectangles.
Upvotes: 1
Reputation: 649
You can do this much more simply by using Java's Area class
Area area = new Area();
area.add(new Area(rect1));
area.add(new Area(rect2));
area.add(new Area(rect3));
From there you can test for intersectons and area.contains as needed. If you want to convert it into a polygon or draw the result, grab the area.getPathIterator(null);
and iterate over the vertexes.
Upvotes: 2
Reputation: 1615
Here is a solution my colleague and I came up with. Hope it can help someone else.
public class PolygonHelper {
public Polygon makePolygon(List<Rectangle> rectangles){
List<Point> points = calcPoints(rectangles);
return new Polygon(points);
}
private List<Point> calcPoints(List<Rectangle> rectangles) {
List<Point> ret = new ArrayList<>();
List<Float> yCoords = new ArrayList<>(getAllYCoords(rectangles));
yCoords.sort(Comparator.naturalOrder());
float previousLeftCoord = 0;
float previousRightCoord = 0;
for(float yCoord : yCoords) {
System.out.println("Considering yCoords "+ yCoord);
float minimumXLeftCoord = minXLeftCoord(yCoord, rectangles);
float maximumXRightCoord = maxXRightCoord(yCoord, rectangles);
System.out.println("min X: "+minimumXLeftCoord);
System.out.println("max X: "+maximumXRightCoord);
if(yCoord == yCoords.get(0)) {
ret.add(new Point(minimumXLeftCoord, yCoord));
ret.add(new Point(maximumXRightCoord, yCoord));
} else {
if(minimumXLeftCoord!=previousLeftCoord) {
ret.add(0, new Point(previousLeftCoord, yCoord));
ret.add(0, new Point(minimumXLeftCoord, yCoord));
} else {
ret.add(0, new Point(minimumXLeftCoord, yCoord));
}
if(maximumXRightCoord!=previousRightCoord) {
ret.add(new Point(previousRightCoord, yCoord));
ret.add(new Point(maximumXRightCoord, yCoord));
} else {
ret.add(new Point(maximumXRightCoord, yCoord));
}
}
previousLeftCoord = minimumXLeftCoord;
previousRightCoord = maximumXRightCoord;
System.out.println(ret);
}
return ret;
}
private Set<Float> getAllYCoords(List<Rectangle> rectangles) {
List<Float> allBottomYCoords = rectangles.stream().map(rectangle -> rectangle.getBottom().getY()).collect(Collectors.toList());
List<Float> allTopYCoords = rectangles.stream().map(rectangle -> rectangle.getTop().getY()).collect(Collectors.toList());
Set<Float> allCoords = new HashSet<>();
allCoords.addAll(allTopYCoords);
allCoords.addAll(allBottomYCoords);
return allCoords;
}
private float minXLeftCoord(Float y, List<Rectangle> rectangles) {
return rectanglesAtY(y, rectangles).stream().map(rect -> rect.getLeft().getX()).min(Comparator.naturalOrder()).get();
}
private float maxXRightCoord(Float y, List<Rectangle> rectangles) {
return rectanglesAtY(y, rectangles).stream().map(rect -> rect.getRight().getX()).max(Comparator.naturalOrder()).get();
}
private List<Rectangle> rectanglesAtY(Float y, List<Rectangle> rectangles) {
List<Rectangle> rectsAtYExcBottomLines = rectsAtYExcBottomLines(y, rectangles);
if(rectsAtYExcBottomLines.size()>0) {
// there are rectangles that are not closing here, so ignore those that are closing.
return rectsAtYExcBottomLines;
} else {
// there are only rectangle bottom lines so we need to consider them.
return rectsAtYIncBottomLines(y, rectangles);
}
}
private List<Rectangle> rectsAtYExcBottomLines(Float y, List<Rectangle> rectangles) {
return rectangles.stream()
.filter(rect -> rect.getTop().getY()<=y && rect.getBottom().getY()>y).collect(Collectors.toList());
}
private List<Rectangle> rectsAtYIncBottomLines(Float y, List<Rectangle> rectangles) {
return rectangles.stream()
.filter(rect -> rect.getTop().getY()<=y && rect.getBottom().getY()==y).collect(Collectors.toList());
}
}
Upvotes: 7