Reputation: 163
I have the following df:
index = pd.to_datetime(['2017-03-01', '2017-03-01', '2017-02-15', '2017-02-01',
'2017-01-20', '2017-01-20', '2017-01-20', '2017-01-02',
'2016-12-04', '2016-12-04', '2016-12-04', '2016-11-16'])
df = pd.DataFrame(data = {'val': [8, 1, 5, 2, 3 , 5, 9, 14, 13, 2, 1, 12],
'group': ['one', 'two', 'one', 'one', 'two', 'two', 'one', 'two',
'two', 'one', 'one', 'two']},
index=index)
df = df.sort_index()
group val
2016-11-16 two 12
2016-12-04 two 13
2016-12-04 one 2
2016-12-04 one 1
2017-01-02 two 14
2017-01-20 two 3
2017-01-20 two 5
2017-01-20 one 9
2017-02-01 one 2
2017-02-15 one 5
2017-03-01 one 8
2017-03-01 two 1
In every group (one, two) I would like to a recency weighted mean of previous val. So for example looking at group one:
group val
2016-12-04 one 2
2016-12-04 one 1
2017-01-20 one 9
2017-02-01 one 2
2017-02-15 one 5
2017-03-01 one 8
For instance, for the date 2017-02-15
, I wish to calculate a new column having as a value for this date a recency weighted version (higher weights for closer dates in the past) of the previous values that are [2,9,1,2]. Notice there is the possibility to have dates multiple times within one group and those should get the same weight.
I thought pandas exponentially weighted function would be good for this. I figured that is the date within one group is the same I would first take the mean of those values so that I can apply a simple shift() later. I tried the following:
df = df.reset_index().set_index(['index', 'group']).groupby(
level=[0,1]).mean().reset_index().set_index('index')
Now if I would not be interested in recency weighting I could to something like
df = df.groupby('group')['val'].expanding().mean().groupby(level=0).shift()
and then merge with the original on date and group. But when I try to make use of pandas.ewma I am missing something like:
df.groupby('group')['val'].ewm(span=27).groupby(level=0).shift()
I can iterate through the groups:
grouped = df.groupby('group')['val']
for key, group in grouped:
print pd.ewma(group, span=27).shift()
index
2016-12-04 NaN
2017-01-20 1.500000
2017-02-01 5.388889
2017-02-15 4.174589
2017-03-01 4.404414
Name: val, dtype: float64
index
2016-11-16 NaN
2016-12-04 12.000000
2017-01-02 12.518519
2017-01-20 13.049360
2017-03-01 10.529680
and then somehow merge on group and date with the original df
but this seems overly complicated. Is there a better way to do this?
Upvotes: 2
Views: 1904
Reputation: 163
Based on Stephen's aswer here is a working version:
def rwma(group):
# perform the ewma
kwargs = dict(ignore_na=False, span=27, min_periods=0, adjust=True)
result = group.resample('1D').mean().ewm(**kwargs).mean().shift()
result = result[group.index].reset_index()
# rename the result column so that the merge goes smoothly
result.rename(columns={result.columns[-1]: 'rwma'}, inplace=True)
return result
recency = df.groupby('group')['val'].apply(rwma)
print(recency)
Output:
index rwma
group
one 0 2016-12-04 NaN
1 2016-12-04 NaN
2 2017-01-20 1.500000
3 2017-02-01 8.776518
4 2017-02-15 4.016278
5 2017-03-01 4.670166
two 0 2016-11-16 NaN
1 2016-12-04 12.000000
2 2017-01-02 12.791492
3 2017-01-20 13.844843
4 2017-01-20 13.844843
5 2017-03-01 6.284914
Upvotes: 1
Reputation: 49794
To perform your Recency Weighted Moving Average without needing to loop through groups and re-merge, you can use apply
.
def rwma(group):
# perform the ewma
kwargs = dict(ignore_na=False, span=27, min_periods=0, adjust=True)
result = group.ewm(**kwargs).mean().shift().reset_index()
# rename the result column so that the merge goes smoothly
result.rename(columns={result.columns[-1]: 'rwma'}, inplace=True)
return result
recency = df.groupby('group')['val'].apply(rwma)
Test Code:
import pandas as pd
df = pd.DataFrame(data={
'val': [8, 1, 5, 2, 3, 5, 9, 14, 13, 2, 1, 12],
'group': ['one', 'two', 'one', 'one', 'two', 'two',
'one', 'two', 'two', 'one', 'one', 'two']},
index=pd.to_datetime([
'2017-03-01', '2017-03-01', '2017-02-15', '2017-02-01',
'2017-01-20', '2017-01-20', '2017-01-20', '2017-01-02',
'2016-12-04', '2016-12-04', '2016-12-04', '2016-11-16'])
).sort_index()
recency = df.groupby('group')['val'].apply(rwma)
print(recency)
Results:
index rwma
group
one 0 2016-12-04 NaN
1 2016-12-04 2.000000
2 2017-01-20 1.481481
3 2017-02-01 4.175503
4 2017-02-15 3.569762
5 2017-03-01 3.899694
two 0 2016-11-16 NaN
1 2016-12-04 12.000000
2 2017-01-02 12.518519
3 2017-01-20 13.049360
4 2017-01-20 10.251243
5 2017-03-01 9.039866
Upvotes: 3