Reputation: 21
I created partitioned parquet files on hdfs and created HIVE external table. When I query the table with filter on partitioning column, spark checks all the partition files instead of specific partition. We are on spark 1.6.0.
dataframe:
df = hivecontext.createDataFrame([
("class1", "Economics", "name1", None),
("class2","Economics", "name2", 92),
("class2","CS", "name2", 92),
("class1","CS", "name1", 92)
], ["class","subject", "name", "marks"])
creating parquet partitions:
hivecontext.setConf("spark.sql.parquet.compression.codec", "snappy")
hivecontext.setConf("spark.sql.hive.convertMetastoreParquet", "false")
df1.write.parquet("/transient/testing/students", mode="overwrite", partitionBy='subject')
Query:
df = hivecontext.sql('select * from vatmatching_stage.students where subject = "Economics"')
df.show()
+------+-----+-----+---------+
| class| name|marks| subject|
+------+-----+-----+---------+
|class1|name1| 0|Economics|
|class2|name2| 92|Economics|
+------+-----+-----+---------+
df.explain(True)
== Parsed Logical Plan ==
'Project [unresolvedalias(*)]
+- 'Filter ('subject = Economics)
+- 'UnresolvedRelation `vatmatching_stage`.`students`, None
== Analyzed Logical Plan ==
class: string, name: string, marks: bigint, subject: string
Project [class#90,name#91,marks#92L,subject#89]
+- Filter (subject#89 = Economics)
+- Subquery students
+- Relation[class#90,name#91,marks#92L,subject#89] ParquetRelation: vatmatching_stage.students
== Optimized Logical Plan ==
Project [class#90,name#91,marks#92L,subject#89]
+- Filter (subject#89 = Economics)
+- Relation[class#90,name#91,marks#92L,subject#89] ParquetRelation: vatmatching_stage.students
== Physical Plan ==
Scan ParquetRelation: vatmatching_stage.students[class#90,name#91,marks#92L,subject#89] InputPaths: hdfs://dev4/transient/testing/students/subject=Art, hdfs://dev4/transient/testing/students/subject=Civil, hdfs://dev4/transient/testing/students/subject=CS, hdfs://dev4/transient/testing/students/subject=Economics, hdfs://dev4/transient/testing/students/subject=Music
But, if I do the same query on HIVE browser we can see HIVE is doing partition pruning.
44 location hdfs://testing/students/subject=Economics
45 name vatmatching_stage.students
46 numFiles 1
47 numRows -1
48 partition_columns subject
49 partition_columns.types string
Is this limitation in spark 1.6.0 or am I missing something here.
Upvotes: 1
Views: 663
Reputation: 21
Found the root cause of this issue. HiveContext used for querying the table doesn't have spark.sql.hive.convertMetastoreParquet" set to "false". Its set to "true" - default value.
When I set it to "false", I can see its using partition pruning.
Upvotes: 1