Reputation: 1297
I have a pandas DataFrame with a MultiIndex as follows:
>>> import pandas as pd
>>> category = ['bar', 'bar', 'bar', 'bar', 'bar', 'baz', 'baz', 'baz', 'baz',
'baz', 'baz', 'foo', 'foo', 'foo']
>>> timestamp = ['2017-01-01 09:00:00', '2017-01-01 09:01:00', '2017-01-01 09:02:00',
'2017-01-01 09:03:00', '2017-01-01 09:04:00', '2016-11-18 03:18:00',
'2016-11-18 03:19:00', '2016-11-18 03:20:00', '2016-11-18 03:21:00',
'2016-11-18 03:22:00', '2016-11-18 03:23:00', '2017-02-03 20:39:00',
'2017-02-03 20:40:00', '2017-02-03 20:41:00']
>>> values = [1,1,2,2,2,35,3,3,4,4,4,28,28,28]
>>> tuples = list(zip(*[category,timestamp]))
>>> index = pd.MultiIndex.from_tuples(tuples, names=['category', 'timestamp'])
>>> df = pd.DataFrame(values,index=index,columns=['values'])
>>> df
values
category timestamp
bar 2017-01-01 09:00:00 1
2017-01-01 09:01:00 1
2017-01-01 09:02:00 2
2017-01-01 09:03:00 2
2017-01-01 09:04:00 2
baz 2016-11-18 03:18:00 35
2016-11-18 03:19:00 3
2016-11-18 03:20:00 3
2016-11-18 03:21:00 4
2016-11-18 03:22:00 4
2016-11-18 03:23:00 4
foo 2017-02-03 20:39:00 28
2017-02-03 20:40:00 28
2017-02-03 20:41:00 28
For each category, I want to find the cumulative sum of the number of times the value column changes, like this:
values changed cum_changes
category timestamp
bar 2017-01-01 09:00:00 1 False 0
2017-01-01 09:01:00 1 False 0
2017-01-01 09:02:00 2 True 1
2017-01-01 09:03:00 2 False 1
2017-01-01 09:04:00 2 False 1
baz 2016-11-18 03:18:00 35 False 0
2016-11-18 03:19:00 3 True 1
2016-11-18 03:20:00 3 False 1
2016-11-18 03:21:00 4 True 2
2016-11-18 03:22:00 4 False 2
2016-11-18 03:23:00 4 False 2
foo 2017-02-03 20:39:00 28 False 0
2017-02-03 20:40:00 28 False 0
2017-02-03 20:41:00 28 False 0
I tried doing this:
df["changes"] = False
df.iloc[idx[:,1:],1] = df.iloc[idx[:,1:],0] == df.iloc[idx[:,:-1],0] #This doesn't work
df["cum_changes"] = df["changed"].groupby(level=[0]).cumsum().astype(int)
But unfortunately the second line doesn't work. It's analogous to the way you would multi-index by value using loc, but apparently iloc doesn't handle a MultiIndex the same way. I can't index by label because the timestamps are different in each group, and I can't use head() because the length of each group is different. Is it possible to do positional indexing on the second level of a MultiIndex?
What I actually need is the "cum_changes" column, the "changed" column is just an intermediate step. If there's a different way to calculate the "cum_changes" column I'm interested to hear it. I know it can be done by iterating over the category column, but it seems like it should be possible to keep this vectorized, so I'm looking for a solution that does not involve looping.
I found this related question, but I don't believe it applies since the solution isn't actually indexing by position but rather finding the labels that correspond to the given positions and indexing by the labels: Slice MultiIndex pandas DataFrame by position
Upvotes: 1
Views: 280
Reputation: 210852
you can use diff()
as @Psidom has already said in the comment:
In [25]: df['x'] = df.groupby(level=0)['values'] \
.apply(lambda x: x.diff().fillna(0).ne(0).cumsum())
In [26]: df
Out[26]:
values x
category timestamp
bar 2017-01-01 09:00:00 1 0
2017-01-01 09:01:00 1 0
2017-01-01 09:02:00 2 1
2017-01-01 09:03:00 2 1
2017-01-01 09:04:00 2 1
baz 2016-11-18 03:18:00 35 0
2016-11-18 03:19:00 3 1
2016-11-18 03:20:00 3 1
2016-11-18 03:21:00 4 2
2016-11-18 03:22:00 4 2
2016-11-18 03:23:00 4 2
foo 2017-02-03 20:39:00 28 0
2017-02-03 20:40:00 28 0
2017-02-03 20:41:00 28 0
Upvotes: 1