Reputation: 1328
How can I improve the performance of the following circle-detection code
from matplotlib.pyplot import imshow, scatter, show
import cv2
image = cv2.imread('points.png', 0)
_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.Canny(image, 1, 1)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 2, 32)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
with the following source image:
I have tried adjusting the parameters of the HoughCircles
function but they result in either too many false positives or too many false negatives. In particular, I am having trouble with spurious circles being detected in the gap between the two blobs:
Upvotes: 2
Views: 6132
Reputation: 353
While it is possible to fine-tune Hough Circles for a given image, the optimal parameters from image to image may vary alot. Hence, it takes quite some effort to make the circle detection robust using Hough Circles, though its doable!
Instead I would suggest to use more modern approaches like:
Upvotes: 2
Reputation: 3071
@Carlos, I'm not really a big fan of Hough Circles in situations like the one you've described. To be honest, I find this algorithm very unintuitive. What I would recommend in your case is using findContour()
function and then calculating mass centers. Thus said, I tuned the Hough's parameters a bit to get reasonable results. I also used a different method for preprocessing before Canny, since I don't see how that thresholding would work in any other case than that particular one.
And the code:
from matplotlib.pyplot import imshow, scatter, show, savefig
import cv2
image = cv2.imread('circles.png', 0)
#_, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY)
image = cv2.GaussianBlur(image.copy(), (27, 27), 0)
image = cv2.Canny(image, 0, 130)
cv2.imshow("canny", image)
cv2.waitKey(0)
imshow(image, cmap='gray')
circles = cv2.HoughCircles(image, cv2.HOUGH_GRADIENT, 22, minDist=1, maxRadius=50)
x = circles[0, :, 0]
y = circles[0, :, 1]
scatter(x, y)
show()
savefig('result1.png')
cv2.waitKey(0)
_, cnts, _ = cv2.findContours(image.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# loop over the contours
for c in cnts:
# compute the center of the contour
M = cv2.moments(c)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#draw the contour and center of the shape on the image
cv2.drawContours(image, [c], -1, (125, 125, 125), 2)
cv2.circle(image, (cX, cY), 3, (255, 255, 255), -1)
cv2.imshow("Image", image)
cv2.imwrite("result2.png", image)
cv2.waitKey(0)
Both methods require some more fine tuning but I hope that gives you something more to work with.
Sources: this answer and pyimagesearch.
Upvotes: 8