Reputation: 11
int main()
{
int i,n;
printf("Enter the number");
scanf("%d",&n);
i=pali(n);
if(n==i)
printf("Number is pall");
else
printf("Not Pall");
}
int pali(int n)
{
int r;
static sum=0;
if(n!=0)
{
r=n%10;
sum=sum*10+r;
pali(n/10);
}
return sum;
}
I used a static variable to add up the sum. Is there any way where no static variable will be used?
Upvotes: 0
Views: 864
Reputation: 112
You can make a function that check only the first and the last digits of the number and pass the rest of the number onward.
To explain better, think about the following cases:
pali(1220) would check for the first (1) and last (0) digits. Since 1 != 0 pali would return false.
pali(17891) would check first (1) and last (1). Since they're equal then the function would recursively return pali(789) (which itself would return false since 7 != 9).
pali(878) would check that 8=8 and recursively return pali(7)
pali(3) would check that first (3) and last (3) numbers are equal and return 0.
The challenge here is to develop an algorithm that:
Check if first and last numbers are the same (even if it's only one digit!)
Strip the number from first and last digits and call itself on the remainder
Then all you need to do is apply recursion. Here's a sample implementation:
int pali(int number)
{
int smallDigit, bigDigit;
/* When recursion ends suceffuly*/
if (number == 0)
return 1;
/* Check for first and last digit of a number */
smallDigit = number % 10;
bigDigit = number;
while(bigDigit/10!=0)
{
bigDigit = bigDigit/10;
smallDigit = smallDigit*10;
}
/* Check to see if both digits are equal (Note: you can't use smallDigit here because it's been multiplied by 10 a few times) */
if (bigDigit != number%10)
return 0;
else
{
number = (number - smallDigit)/10; /* This is why smallDigit was multiplied by 10 a few times */
return pali(number); /* Recursion time */
}
}
Upvotes: 0
Reputation: 465
Sure, you can do it this way :
#include <stdio.h>
int pali(int n)
{
int sum = 0;
int keeper = 0;
for (int i = n; i > 0; i /= 10) {
if (keeper != 0) {
sum *= 10;
sum += (keeper - i * 10);
}
keeper = i;
}
sum *= 10;
sum += keeper;
return sum;
}
int main(int argc, char** argv)
{
int i, n;
printf("Enter the number : ");
scanf("%d",&n);
i = pali(n);
if(n == i)
printf("Number is palindrome");
else
printf("Not Palindrome");
}
Using recursion is even easier :
#include <stdio.h>
int pali(int n, int sum)
{
sum += n - ((n / 10) * 10);
n /= 10;
if (n > 0)
pali(n, sum * 10);
else
return sum;
}
int main(int argc, char** argv)
{
int i, n;
printf("Enter the number : ");
scanf("%d",&n);
i = pali(n, 0);
if(n == i)
printf("Number is palindrome");
else
printf("Not Palindrome");
}
And a recursive version with only one parameter :
#include <stdio.h>
int pali(int n)
{
int fUnit, lUnit;
fUnit = n;
int mul = 1;
while (fUnit > 10) {
fUnit /= 10;
mul *= 10;
}
lUnit = n - ((n / 10) * 10);
n -= (fUnit * mul);
n /= 10;
if (mul == 1) return 1;
else if (fUnit == lUnit) return pali(n);
else return 0;
}
int main(int argc, char** argv)
{
int n;
printf("Enter the number : ");
scanf("%d",&n);
if(pali(n) == 1)
printf("Number is palindrome");
else
printf("Not Palindrome");
}
Upvotes: 1
Reputation: 214300
Here is an optimized version that
static
.#include <stdio.h>
static void perform_useless_recursion (int n)
{
if(n--)
{
perform_useless_recursion(n);
}
}
_Bool is_pali (int n)
{
perform_useless_recursion(1);
int sum = 0;
for(int i=n; i!=0; i/=10)
{
sum = sum*10 + i%10;
}
return n == sum;
}
int main (void)
{
int n=5005;
if(is_pali(n))
printf("Number is pall");
else
printf("Not Pall");
return 0;
}
The code could be improved even further by removing the perform_useless_recursion()
function.
The advantage of this code is that the actual calculation is performed by a fast loop, instead of slow, dangerous recursion. In the real world outside artificial school assignments, there is no reason to write inefficient and dangerous code when you could write efficient and safe code. As a bonus, removing recursion also gives far more readable code.
If you benchmark this code you'll notice that it will be faster than all other versions posted and consumes less memory.
Upvotes: 0
Reputation: 8142
Since your function returns sum
you could replace this line:
pali(n/10);
with
sum=pali(n/10);
You'd also have to move it up a line too.
Upvotes: 0
Reputation: 399959
Yes, the typical ("functional") approach is to carry the state in the form of a function argument. This often makes it necessary/nice to have a second function that does the actual recursion, which you can start by calling with the proper initial values for the state:
int do_pali(int sum, int n)
{
if(n != 0)
{
const int r = n % 10;
return do_pali(10 * sum + r, n / 10);
}
return sum;
}
the public function then just becomes:
int pali(int n)
{
return do_pali(0, n);
}
In languages with inner functions this can be more neatly expressed (GCC supports this as an extension).
Upvotes: 3