Reputation: 373
I'm trying to create a new pandas dataframe by rolling the row values in a window. i.e
A R N D C Q
-1 -2 -3 -3 -1 -2
-1 -2 -3 -3 -1 -2
-1 -2 -3 -3 -1 -2
-1 -2 -3 -3 -1 -2
to something like this:
A1 R1 N1 D1 C1 Q1 A2 R2 N2 D2 C2 Q2 … An Rn Nn Dn Cn Qn
-1 -2 -3 -3 -1 a -1 -2 -3 -3 -1 b
-1 -2 -3 -3 -1 b -1 -2 -3 -3 -1 c
-1 -2 -3 -3 -1 c -1 -2 -3 -3 -1 d
-1 -2 -3 -3 -1 d
. . . . . .
it is similar to a rolling window in a string, i.e.
EXAM
with window 3 will yield EXA,XAM
. The key difference here being that instead of letters, I'm trying to create windows by rows. This new dataframe will be used for training a svm. Although I can create another column with scaled value corresponding to other columns (a single column is easier to roll), I think I will loose some information, that's why I'm taking complete columns.
In essence, I'm trying to do something like this, but for n
window size:
Upvotes: 1
Views: 673
Reputation: 113
You can use numpy indexing to accomplish this:
In [1]: import pandas as pd
...: import numpy as np
...: import string
...:
In [2]: abc = list(string.ascii_letters.upper())
...: df = pd.DataFrame(dict(a=abc, b=abc[::-1]))
...: df.head()
...:
Out[2]:
a b
0 A Z
1 B Y
2 C X
3 D W
4 E V
In [3]: # construct a indexing array
...: n = 5
...: vals = df.values
...: idx = np.tile(np.arange(n), (len(df) - n + 1, 1)) + np.arange(len(df) - n + 1).reshape(-1,1)
...: idx[:10]
...:
Out[3]:
array([[ 0, 1, 2, 3, 4],
[ 1, 2, 3, 4, 5],
[ 2, 3, 4, 5, 6],
[ 3, 4, 5, 6, 7],
[ 4, 5, 6, 7, 8],
[ 5, 6, 7, 8, 9],
[ 6, 7, 8, 9, 10],
[ 7, 8, 9, 10, 11],
[ 8, 9, 10, 11, 12],
[ 9, 10, 11, 12, 13]])
In [4]: # construct columns and index using flattened index array
...: cols = [ "{}_{}".format(c,str(i)) for i in range(n) for c in df.columns]
...: df2 = pd.DataFrame(vals[idx.flatten()].reshape(len(df)-n+1,df.shape[1]*n), columns=cols)
...: df2.head()
...:
Out[4]:
a_0 b_0 a_1 b_1 a_2 b_2 a_3 b_3 a_4 b_4
0 A Z B Y C X D W E V
1 B Y C X D W E V F U
2 C X D W E V F U G T
3 D W E V F U G T H S
4 E V F U G T H S I R
Upvotes: 1