Reputation: 191
Is there any efficient way to count duplicates of each pair in a vector? For example, if I have a vector like this:
vector<pair<int, int> > duplicates={{1,2},{3,2},{2,1},{5,6},{5,6},{1,2},{2,1},{5,6}};
The output should be:
{1,2}:2
{3,2}:1
{2,1}:2
{5,6}:3
And TO be CLEAR, I am just curious about how to solve this problem more efficiently. I have tried to compare each pair of this vector and it seems not a smart way.
Upvotes: 0
Views: 1399
Reputation: 14865
An easy way is to use a map or unordered map to count them:
#include <iostream>
#include <vector>
#include <map>
int main( int argn, char **argc)
{
std::vector<std::pair<int, int> > duplicates={{1,2},{3,2},{2,1},{5,6},{5,6},{1,2},{2,1},{5,6}};
std::map<std::pair<int, int>, int> checker;
for (const auto &elem: duplicates)
{
++checker[elem];
}
for (const auto &elem: checker) std::cout << "{" << elem.first.first <<
"," << elem.first.second <<
"}: " << elem.second << std::endl;
return 0;
}
Note that map insertion/recovery is O(log(n)), and the loop around make it aprox. O(n*log(n))
EDIT:
Following the additional note of the OP, here is a better (faster) implementation using unordered_map:
#include <iostream>
#include <vector>
#include <unordered_map>
namespace std
{
template <>
struct hash<std::pair<int,int>>
{
size_t operator()(pair<int, int> const &p) const
{
// Fine for 64bit size_t and 32bit int. Otherwise, some collision may happens.
size_t result = (static_cast<size_t>(p.first) <<(sizeof(std::size_t)<<2))
+ static_cast<size_t>(p.second);
return result;
}
};
}
int main( int argn, char **argc)
{
std::vector<std::pair<int, int> > duplicates={{1,2},{3,2},{2,1},{5,6},{5,6},{1,2},{2,1},{5,6}};
std::unordered_map<std::pair<int, int>, int> checker;
for (const auto &elem: duplicates)
{
++checker[elem]; // value initialized with 0
}
for (const auto &elem: checker) std::cout << "{" << elem.first.first <<
"," << elem.first.second <<
"}: " << elem.second << std::endl;
return 0;
}
Insertion in unordered_map, using a hash make it usually constant (worse case when there are collision is linear). Final complexity in average is O(N)
Upvotes: 3
Reputation: 4531
I have a simple solution:
General search Complexity: n*n
This search Complexity: nlog(n)
Upvotes: 1